272
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effects of void shape and orientation on the elastoplastic properties of spheroidally voided single-crystal and nanotwinned copper

& ORCID Icon
Pages 2291-2319 | Received 21 Jan 2020, Accepted 29 Apr 2020, Published online: 13 May 2020

References

  • I. Barsoum and J. Faleskog, Rupture mechanisms in combined tension and shear – Experiments, Int. J. Solids Struct. 44 (2007), pp. 1768–1786. doi: 10.1016/j.ijsolstr.2006.09.031
  • A. Weck, D. Wilkinson, E. Maire, and H. Toda, Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials, Acta. Mater. 56 (2008), pp. 2919–2928. doi: 10.1016/j.actamat.2008.02.027
  • S. Jenkins, Nanoporous Materials: Types, Properties and Uses, Nova Science Publishers, New York, 2010.
  • A.F. McClintock, A criterion for ductile fracture by the growth of holes, J. Appl. Mech. 35 (1968), pp. 363–371. doi: 10.1115/1.3601204
  • A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part 1-Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol. 99 (1977), pp. 2–15. doi: 10.1115/1.3443401
  • V. Tvergaard, On localization in ductile materials containing spherical voids, Int. J. Fract. 18 (1982), pp. 237–252.
  • X. Gao, T. Zhang, J. Zhou, S.M. Graham, M. Hayden, and C. Roe, On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule, Int. J. Plasticity 27 (2011), pp. 217–231. doi: 10.1016/j.ijplas.2010.05.004
  • A.A. Benzerga, J.-B. Leblond, A. Needleman, and V. Tvergaard, Ductile failure modeling, Int. J. Fract. 201 (2016), pp. 29–80. doi: 10.1007/s10704-016-0142-6
  • A. Benzerga, J. Besson, and A. Pineau, Anisotropic ductile fracture: Part I: Experiments, Acta Mater. 52 (2004), pp. 4623–4638. doi: 10.1016/j.actamat.2004.06.020
  • C. Hong, S. Fæster, N. Hansen, X. Huang, and R.I. Barabash, Non-spherical voids and lattice reorientation patterning in a shock-loaded al single crystal, Acta Mater. 134 (2017), pp. 16–30. doi: 10.1016/j.actamat.2017.05.035
  • M. Gologanu, J.-B. Leblond, and J. Devaux, Approximate models for ductile metals containing non-spherical voids–Case of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solids 41 (1993), pp. 1723–1754. doi: 10.1016/0022-5096(93)90029-F
  • M. Gologanu, J.-B. Leblond, and J. Devaux, Approximate models for ductile metals containing nonspherical voids–Case of axisymmetric oblate ellipsoidal cavities, J. Eng. Mater. Technol. 116 (1994), pp. 290–297. doi: 10.1115/1.2904290
  • P. Thomason, Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids, Acta Metall. 33 (1985), pp. 1079–1085. doi: 10.1016/0001-6160(85)90201-9
  • K. Madou and J.-B. Leblond, A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids I: Limit-analysis of some representative cell, J. Mech. Phys. Solids 60 (2012), pp. 1020–1036. doi: 10.1016/j.jmps.2011.11.008
  • K. Madou and J.-B. Leblond, A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids – II: Determination of yield criterion parameters, J. Mech. Phys. Solids 60 (2012), pp. 1037–1058. doi: 10.1016/j.jmps.2012.01.010
  • H. Li, M. Fu, J. Lu, H. Yang, and Ductile fracture, Experiments and computations, Int. J. Plasticity 27 (2011), pp. 147–180. doi: 10.1016/j.ijplas.2010.04.001
  • A. Hosokawa, D.S. Wilkinson, J. Kang, and E. Maire, Onset of void coalescence in uniaxial tension studied by continuous X-ray tomography, Acta Mater. 61 (2013), pp. 1021–1036. doi: 10.1016/j.actamat.2012.08.002
  • M.J. Nemcko, J. Li, and D.S. Wilkinson, Effects of void band orientation and crystallographic anisotropy on void growth and coalescence, J. Mech. Phys. Solids 95 (2016), pp. 270–283. doi: 10.1016/j.jmps.2016.06.003
  • C. Mi, D.A. Buttry, P. Sharma, and D.A. Kouris, Atomistic insights into dislocation-based mechanisms of void growth and coalescence, J. Mech. Phys. Solids 59 (2011), pp. 1858–1871. doi: 10.1016/j.jmps.2011.05.008
  • G. Potirniche, M. Horstemeyer, G. Wagner, and P. Gullett, A molecular dynamics study of void growth and coalescence in single crystal nickel, Int. J. Plasticity 22 (2006), pp. 257–278. doi: 10.1016/j.ijplas.2005.02.001
  • S. Traiviratana, E.M. Bringa, D.J. Benson, and M.A. Meyers, Void growth in metals: Atomistic calculations, Acta Mater. 56 (2008), pp. 3874–3886. doi: 10.1016/j.actamat.2008.03.047
  • E.M. Bringa, S. Traiviratana, and M.A. Meyers, Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects, Acta Mater. 58 (2010), pp. 4458–4477. doi: 10.1016/j.actamat.2010.04.043
  • S. Brach, L. Dormieux, D. Kondo, and G. Vairo, A computational insight into void-size effects on strength properties of nanoporous materials, Mech. Mater. 101 (2016), pp. 102–117. doi: 10.1016/j.mechmat.2016.07.012
  • P. Jing, L. Yuan, R. Shivpuri, C. Xu, Y. Zhang, D. Shan, and B. Guo, Evolution of spherical nanovoids within copper polycrystals during plastic straining: Atomistic investigation, Int. J. Plasticity 100 (2018), pp. 122–141. doi: 10.1016/j.ijplas.2017.09.016
  • K. Zhao, C. Chen, Y. Shen, and T. Lu, Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper, Comput. Mater. Sci. 46 (2009), pp. 749–754. doi: 10.1016/j.commatsci.2009.04.034
  • J. Wang, Z. Yue, Z. Wen, D. Zhang, and C. Liu, Orientation effects on the tensile properties of single crystal nickel with nanovoid: Atomistic simulation, Comput. Mater. Sci. 132 (2017), pp. 116–124. doi: 10.1016/j.commatsci.2017.02.024
  • S. Xu and S.Z. Chavoshi, Uniaxial deformation of nanotwinned nanotubes in body-centered cubic tungsten, Curr. Appl. Phys. 18 (2018), pp. 114–121. doi: 10.1016/j.cap.2017.10.003
  • S. Chandra, M.K. Samal, V.M. Chavan, and S. Raghunathan, Void growth in single crystal copper-an atomistic modeling and statistical analysis study, Philos. Mag. 98 (2018), pp. 577–604. doi: 10.1080/14786435.2017.1412591
  • Y. Zhang and S. Jiang, Investigation on dislocation-based mechanisms of void growth and coalescence in single crystal and nanotwinned nickels by molecular dynamics simulation, Philos. Mag. 97 (2017), pp. 2772–2794. doi: 10.1080/14786435.2017.1352108
  • J. Ding, H.-N. Zhao, L.-S. Wang, X. Huang, J. Wang, K. Song, S.-Q. Lu, and X.-G. Zeng, Influence of loading directions on dislocation slip mechanism of nanotwinned Ni with void defect at the twin boundary, Comput. Mater. Sci. 152 (2018), pp. 1–11. doi: 10.1016/j.commatsci.2018.05.026
  • K. Doihara, T. Okita, M. Itakura, M. Aichi, and K. Suzuki, Atomic simulations to evaluate effects of stacking fault energy on interactions between edge dislocation and spherical void in face-centred cubic metals, Philos. Mag. 98 (2018), pp. 2061–2076. doi: 10.1080/14786435.2018.1472401
  • Y. Cui and Z. Chen, Molecular dynamics modeling on the role of initial void geometry in a thin aluminum film under uniaxial tension, Model. Simul. Mater. Sci. Eng. 23 (2015), pp. 085011. doi: 10.1088/0965-0393/23/8/085011
  • Y. Su and S. Xu, On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study, Mater. Sci. Eng. A 678 (2016), pp. 153–164. doi: 10.1016/j.msea.2016.09.091
  • S. Xu, Y. Su, D. Chen, and L. Li, Plastic deformation of Cu single crystals containing an elliptic cylindrical void, Mater. Lett. 193 (2017), pp. 283–287. doi: 10.1016/j.matlet.2017.02.005
  • S. Brach, S. Cherubini, D. Kondo, and G. Vairo, Void-shape effects on strength properties of nanoporous materials, Mech. Res. Commun. 86 (2017), pp. 11–17. doi: 10.1016/j.mechrescom.2017.10.009
  • L. Wang, J. Sun, Q. Li, Z. Li, and Y. Zheng, Coupling effect of twin boundary and void on the mechanical properties of bulk nanotwinned copper: An atomistic simulation, J. Phys. D: Appl. Phys. 52 (2019), pp. 055303.
  • B. Li and C. Mi, On the ductile damage of nanotwinned copper crystal with prolate void defect at the twin boundary, Results Phys. 14 (2019), pp. 102464.
  • D. Faken and H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics, Comput. Mater. Sci. 2 (1994), pp. 279–286. doi: 10.1016/0927-0256(94)90109-0
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63 (2001), pp. 224106. doi: 10.1103/PhysRevB.63.224106
  • S. Rahimi, M. King, and C. Dumont, Stress relaxation behaviour in IN718 nickel based superalloy during ageing heat treatments, Mater. Sci. Eng. A 708 (2017), pp. 563–573. doi: 10.1016/j.msea.2017.09.116
  • W. Chen, T. Kitamura, and M. Feng, Effect of geometrically necessary dislocations on inelastic strain rate for torsion stress relaxation of polycrystalline copper in micro scale, Mater. Sci. Eng. A 726 (2018), pp. 137–142. doi: 10.1016/j.msea.2018.04.084
  • A.A. Benzerga and J.-B. Leblond, Ductile fracture by void growth to coalescence, in: Advances in Applied Mechanics, volume 44 of Advances in Applied Mechanics, H. Aref and E. van der Giessen, eds., Elsevier, 2010, pp. 169–305.
  • X. Zhao, C. Lu, A.K. Tieu, L. Pei, L. Zhang, L. Su, and L. Zhan, Deformation mechanisms in nanotwinned copper by molecular dynamics simulation, Mater. Sci. Eng. A 687 (2017), pp. 343–351. doi: 10.1016/j.msea.2016.12.061
  • K. Lu, Stabilizing nanostructures in metals using grain and twin boundary architectures, Nat. Rev. Mater. 1 (2016), pp. 16019. doi: 10.1038/natrevmats.2016.19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.