425
Views
17
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Nanocrystalline gold with small size: inverse Hall–Petch between mixed regime and super-soft regime

ORCID Icon, ORCID Icon, , &
Pages 2335-2351 | Received 02 Apr 2019, Accepted 22 Apr 2020, Published online: 20 May 2020

References

  • H. Gleiter, Nanocrystalline materials. Prog. Mater. Sci. 33 (1989), pp. 223–315.
  • M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (2006), pp. 427–556.
  • S. Huang, J. Wang, and C. Zhou, Deformation of heterogeneous nanocrystalline lamella with a preexisting crack. JOM 70(1) (2018), pp. 60–65.
  • T.G. Nieh and J. Wadsworth, Hall-Petch relation in nanocrystalline solids. Scr. Metall. Mater 25 (1991), pp. 955–958.
  • E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. London, Sect. B 64 (1951), pp. 747–753.
  • N.J. Petch, The cleavage strengh of polycrystals. J. Iron Steel Inst. London 174 (1953), pp. 25–28.
  • C.S. Pande and K.P. Cooper, Nanomechanics of Hall–petch relationship in nanocrystalline materials. Prog. Mater Sci 54 (2009), pp. 689–706.
  • R.W. Armstrong, 60 years of Hall-Petch: past to present nano-scale connections. Mater. Trans 55(1) (2014), pp. 2–12.
  • Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao, Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305 (2004), pp. 654–657.
  • J. Schiøtz, F.D.D. Tolla, and K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes. Nature 391 (1998), pp. 561–563.
  • A.J. Haslam, S.R. Phillpot, D. Wolf, D. Moldovan, and H. Gleiter, Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation. Mater. Sci. Eng. A 318 (2001), pp. 293–312.
  • J. Schiøtz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper. Science 301 (2003), pp. 1357–1359.
  • A.J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater. 51 (2003), pp. 2097–2112.
  • H.V. Swygenhoven, P.M. Derlet, and A.G. Frøseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater 3 (2004), pp. 399–403.
  • S. Yip, Nanocrystalline metals: Mapping plasticity. Nat. Mater 3 (2004), pp. 11–12.
  • J.R. Trelewicz and C.A. Schuh, The Hall–petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 55 (2007), pp. 5948–5958.
  • L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, and X. Han, Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun 5 (2014), p. 4402.
  • H.V. Swygenhoven and J.R. Weertman, Deformation in nanocrystalline metals. Mater. Today 9 (2006), pp. 24–31.
  • H.V. Swygenhoven, P.M. Derlet, and A. Hasnaou, Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66 (2002), p. 024101.
  • V. Yamakov, D. Wolf, S.R. Phillpot, and A.K. Mukherjee, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater 1 (2002), pp. 45–49.
  • A. Rida, E. Rouhaud, A. Makke, M. Micoulaut, and B. Mantisi, Study of the effects of grain size on the mechanical properties of nanocrystalline copper using molecular dynamics simulation with initial realistic samples. Philos. Mag 97(27) (2017), pp. 2387–2405.
  • A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, On the validity of the hall-petch relationship in nanocrystalline materials. Scr. Metall 23 (1989), pp. 1679–1683.
  • G. Palumbo, U. Erb, and K.T. Aust, Triple line disclination effects on the mechanical behaviour of materials. Scr. Metall. Mater 24(12) (1990), pp. 2347–2350.
  • C.C. Koch and J. Narayan, The inverse Hall-Petch effect—fact or artifact?. MRS Online Proceedings Library Archive 634 (2000), p. B511.
  • H. Conrad and J. Narayan, Mechanisms for grain size hardening and softening in Zn. Acta Mater. 50(20) (2002), pp. 5067–5078.
  • J. Narayan, Size and interface control of novel nanocrystalline materials using pulsed laser deposition. J. Nanopart. Res 2(1) (2000), pp. 91–96.
  • A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust, Deviations from hall-petch behaviour in as-prepared nanocrystalline nickel. Scr. Metall. Mater 27(9) (1992), pp. 1185–1188.
  • J. Markmann, P. Bunzel, H. Rösner, K.W. Liu, K.A. Padmanabhan, R. Birringer, H. Gleiter, and J. Weissmüller, Microstructure evolution during rolling of inert-gas condensed palladium. Scr. Mater 49(7) (2003), pp. 637–644.
  • J. Weissmüller, J. Löffler, and M. Kleber, Atomic structure of nanocrystalline metals studied by diffraction techniques and EXAFS. Nanostruct. Mater 6(1-4) (1995), pp. 105–114.
  • H. Hahn and K.A. Padmanabhan, A model for the deformation of nanocrystalline materials. Phil. Mag. B 76(4) (1997), pp. 559–571.
  • H. Hahn, P. Mondal, and K.A. Padmanabhan, Plastic deformation of nanocrystalline materials. Nanostruct. Mater 9(1-8) (1997), pp. 603–606.
  • K.A. Padmanabhan, G.P. Dinda, H. Hahnb, and H. Gleiter, Inverse Hall–petch effect and grain boundary sliding controlled flow in nanocrystalline materials. Mater. Sci. Eng. A 452-453 (2007), pp. 462–468.
  • K.A. Padmanabhan, S. Sripathi, H. Hahn, and H. Gleiter, Inverse Hall–petch effect in quasi-and nanocrystalline materials. Mater. Lett 133 (2014), pp. 151–154.
  • R. Birringer, H. Gleiter, H.-P. Klein, and P. Marquardt, Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?. Phys. Lett. A 102(8) (1984), pp. 365–369.
  • R. Birringer, Nanocrystalline materials. Mater. Sci. Eng. A 117 (1989), pp. 33–43.
  • K. Zhou, B. Liu, Y. Yao, and K. Zhong, Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics. Mater. Sci. Eng. A 615 (2014), pp. 92–97.
  • Z.H. Cao, P.Y. Li, H.M. Lu, Y.L. Huang, and X.K. Meng, Thickness and grain size dependent mechanical properties of Cu films studied by nanoindentation tests. J. Phys. D: Appl. Phys 42 (2009), p. 065405.
  • H. Conrad and J. Narayan, Mechanism for grain size softening in nanocrystalline Zn. Appl. Phys. Lett 81 (2002), pp. 2241–2243.
  • H.V. Swygenhoven, A. Caro, and D. Farkas, A molecular dynamics study of polycrystalline fcc metals at the nanoscale: grain boundary structure and its influence on plastic deformation. Mater. Sci. Eng. A 309-310 (2001), pp. 440–444.
  • J. Schiøtz, T. Vegge, F.D.D. Tolla, and K.W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60 (1999), pp. 11971–11983.
  • H.V. Swygenhoven and M. Spaczer, Competing plastic deformation mechanisms in nanophase metals. Phys. Rev. B 60 (1999), pp. 22–25.
  • H.V. Swygenhoven, Grain boundaries and dislocations. Science 296 (2002), pp. 66–67.
  • Z.C. Cordero, B.E. Knight, and C.A. Schuh, Six decades of the Hall-Petch effect- a survey of grain-size strengthening studies on pure metals. Int. Mater. Rev 61 (2016), pp. 495–512.
  • R.D. Emery and G.L. Povirk, Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater. 51(7) (2003), pp. 2079–2087.
  • M. Hakamada and M. Mabuchi, Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater 56(11) (2007), pp. 1003–1006.
  • J. Liu, X. Fan, Y. Shi, D.J. Singh, and W. Zheng, Nanopores in nanocrystalline gold. Materialia 5 (2019), p. 100195.
  • B. Wu, A. Heidelberg, and J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater 4(7) (2005), pp. 525–529.
  • J. Wang, F. Sansoz, C. Deng, G. Xu, G. Han, and S.X. Mao, Strong Hall–petch type behavior in the elastic strain limit of nanotwinned gold nanowires. Nano Lett. 15 (2015), pp. 3865–3870.
  • M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct. Mater 5(6) (1995), pp. 689–697.
  • S. Sakai, H. Tanimoto, and H. Mizubayashi, Mechanical behavior of high-density nanocrystalline gold prepared by gas deposition method. Acta Mater. 47(1) (1998), pp. 211–217.
  • H. Conrad and K. Jung, Effect of grain size from mm to nm on the flow stress and plastic deformation kinetics of Au at low homologous temperatures. Mater. Sci. Eng. A 406 (2005), pp. 78–85.
  • Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo, Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: effects of grain size and film thickness. Mater. Sci. Eng. A 427 (2006), pp. 232–240.
  • L.W. Wang and B.C. Prorok, Experimental evidence that the onset of mechanical softening in nanocrystalline metals is strain rate dependent. Mater. Sci. Forum 633-634 (2010), pp. 99–105.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys 117 (1995), pp. 1–19.
  • S.M. Foiles, M.I. Baskes, and M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33 (1986), pp. 7983–7991.
  • E.T. Lilleodden, J.A. Zimmerman, S.M. Foilesc, and W.D. Nix, Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51 (2003), pp. 901–920.
  • C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58(17) (1998), pp. 11085–11088.
  • J. Liu, X. Fan, Y. Shi, D.J. Singh, and W. Zheng, Melting of nanocrystalline gold. J. Phys. Chem. C 123(1) (2019), pp. 907–914.
  • P. Hirel, Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun 197 (2015), pp. 212–219.
  • H. Kim and A. Strachan, Mechanical response of nanocrystalline platinum via molecular dynamics: size effects in bulk versus thin-film samples. Modell. Simul. Mater. Sci. Eng 23 (2015), p. 065012.
  • T. Zhang, K. Zhou, and Z.Q. Chen, Strain rate effect on plastic deformation of nanocrystalline copper investigated by molecular dynamics. Mater. Sci. Eng. A 648 (2015), pp. 23–30.
  • M.F. Horstemeyer, M.I. Baskes, and S.J. Plimpton, Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 49(20) (2001), pp. 4363–4374.
  • Y. Guo, Z. Zhuang, X.Y. Li, and Z. Chen, An investigation of the combined size and rate effects on the mechanical responses of FCC metals. Int. J. Solids Struct 44(3-4) (2007), pp. 1180–1195.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng 18 (2010), p. 015012.
  • A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng 20(8) (2012), p. 085007.
  • A. Stukowski, Computational analysis methods in atomistic modeling of crystals. JOM 66(3) (2014), pp. 399–407.
  • W.D. Callister, Materials Science and Engineering. 3rd ed.Wiley, New York, 1994.
  • C. Xu, L. Yuan, D. Shan, and B. Guo, The influence of lamellar twins on deformation mechanism in nanocrystalline magnesium under uniaxial compression. J. Mater. Sci 54(19) (2019), pp. 12623–12642.
  • V.Y. Gertsman, M. Hoffmann, H. Gleiter, and R. Birringer, The study of grain size dependence of yield stress of copper for a wide grain size range. Acta Metall. Mater 42(10) (1994), pp. 3539–3544.
  • Y.B. Wang, B.Q. Li, and M.L. Suia, Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl. Phys. Lett 92 (2008), p. 011903.
  • T.-H. Fang, C.-C. Huang, and T.-C. Chiang, Effects of grain size and temperature on mechanical response of nanocrystalline copper. Mater. Sci. Eng. A 671 (2016), pp. 1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.