151
Views
5
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Electronic structure and magnetic properties of the quaternary perovskites LnMn3V4O12 (Ln = La, Nd and Gd)

, , &
Pages 2386-2401 | Received 24 Jul 2019, Accepted 02 May 2020, Published online: 18 May 2020

References

  • A.A. Belik and W. Yi, High-pressure synthesis, crystal chemistry and physics of pervoskites with small cations at the A site. J. Phys. Condens. Matter 26 (2014), pp. 163201–163213. doi: 10.1088/0953-8984/26/16/163201
  • I.S. Kim, W.H. Jung, Y. Inaguma, T. Nakamura, and M. Itoh, Dielectric properties of A-site order deficient pervoskite-type Lanthanum-Calcium-Titanium Oxide solid solution system [(1-x) La2/3 TiO3-x CaTiO3 (0.1≤x≤0.96)]. Mater. Res. Bull 30 (1995), pp. 307–316. doi: 10.1016/0025-5408(94)00142-1
  • Y. Samakawa, A-site-ordered pervoskites with intriguing physical properties Inorg. Chem 47 (2008), pp. 8562–8570.
  • Y. Long, A-site ordered quadruple perovskite oxide AA′3B4O12. Chin. Phys. B 25 (2016), pp. 078108–078121. doi: 10.1088/1674-1056/25/7/078108
  • M. Toyoda, K. Yamauchi, and T. Oguchi, Ab ignition study of magnetic coupling in CaCu3B4O12 (B = Ti, Ge, Zr and Sn). Phys. Rev. B 87 (2013), pp. 224430–2244307. doi: 10.1103/PhysRevB.87.224430
  • Z. Zeng, M. Greenblatt, M.A. Subramanian, and M. Croft, Large low-field magmetoresistance in perovskite-type CaCu3Mn4O12 with double exchange. Phys. Rev. Lett 82 (1999), pp. 3164–3167. doi: 10.1103/PhysRevLett.82.3164
  • J.A. Alonso, J.S. Benitez, A. de A. Andres, M.J.M. Lope, M.T. Casais, and J.L. Martinez, Enhanced magneto-resistance in the complex perovskite. Appl. Phys. Lett 83 (2003), pp. 2623–2625. doi: 10.1063/1.1611647
  • K. Takata, I. Yamada, M. Azuma, M. Takano, and Y. Shimakawa, Magnetoresistance and electronic structure of the half-metallic ferrimagnet BiCu3Mn4O12. Phys. Rev. B 76 (2007), pp. 024429–4. doi: 10.1103/PhysRevB.76.024429
  • A. Gauzzi, G. Rousse, F. Mezzadri, G. Calestani, G. André, F. Bourée, M. Calicchio, E. Gilioli, R. Cabassi, F. Bolzoni, A. Prodi, P. Bordet, and M. Marezio, Magnetoelectric coupling driven by inverse magnetostriction in multiferroic BiMn3Mn4O12. J. Appl. Phys 113 (2013), pp. 043920–8. doi: 10.1063/1.4789350
  • D. Meyers, S. Middey, J.G. Cheng, S. Mukherjee, B.A. Gray, Y. Cao, J.S. Zhou, J.B. Goodenough, Y. Choi, D. Haskel, et al., Competition between heavy fermion and Kondo interaction in isoelectronic A-site-ordered perovskites. Nat. Commun. 5 (2014), pp. 1–6. doi: 10.1038/ncomms6818
  • A. Gauzzi, F.P. Milton, V.P. Gastaldo, M. Verseils, A.J. Gualdi, D.V. Dreifus, Y. Klein, D. Garcia, A.J.A. de Oliveira, P. Bordet, et al., Ferroelectricity in the 1 μC cm−2 range induced by canted antiferromagnetism in (LaMn3)Mn4O12. Appl. Phys. Lett 115 (2019), pp. 152902–5. doi: 10.1063/1.5108640
  • I. Yamada, S. Marukawa, M. Murakami, and S. Mori, True negative thermal expansion in Mn-doped LaCu3Fe4O12 perovskite oxides. Appl. Phys. Lett 105 (2014), pp. 231906–4. doi: 10.1063/1.4903890
  • H. Li, S. Liu, L. Chen, J. Zhao, B. Chen, Z. Wang, J. Meng, and X. Liu, First-principles study of negative thermal expansion mechanism in A-site-ordered perovskite SrCu3Fe4O12. RSC Adv. 5 (2015), pp. 1801–1807. doi: 10.1039/C4RA08652J
  • J. Sugiyama, H. Nozaki, I. Umegaki, K. Miwa, W. Higemoto, E.J. Ansaldo, J.H. Brewer, H. Sakurai, M. Isobe, H. Takagi, et al., Magnetism of the A-site ordered perovskites CaCu3Cr4O12 and LaCu3Cr4O12. Phys. Rev. B 97 (2018), pp. 024416–9. doi: 10.1103/PhysRevB.97.024416
  • S.H. Byeon, S.S. Lee, J.B. Parise, P.M. Woodward, and N.H. Hur, New ferrimagnetic oxide CaCu3Cr2Sb2O12: high-pressure synthesis, structure, and magnetic properties. Chem. Mater 17 (2005), pp. 3552–3557. doi: 10.1021/cm050397b
  • S. Mehmood, Z. Ali, Z. Hashmi, and S. Khan, Structural, optoelectronic and elastic properties of quaternary perovskites CaPd3B4O12 (B = Ti, V). Int. J. Mod. Phys B 33 (2019), pp. 1950121–14. doi: 10.1142/S0217979219502126
  • T. Saito, M. Toyoda, C. Ritter, S. Zhang, T.O. guchi, J.P. Attfield, and Y. Simakawa, Symmetry-breaking 60°-spin order in the A-site-ordered perovskite LaMn3V4O12. Phys. Rev. B 90 (2014), pp. 214405–214411. doi: 10.1103/PhysRevB.90.214405
  • S. Zhang, T. Saito, M. Mizumaki, W.T. Chen, T. Tohyama, and Y. Simakawa, Site-Selective doping effect in AMn3V4O12 (A = Na+, Ca+2 and La3+). J. Am. Chem. Soc. 135(16) (2013), pp. 6056–6060. doi: 10.1021/ja308851f
  • Y. Simakawa, S. Zhang, T. Saito, M.W. Lufaso, and P.M. Woodward, Order-disorder transition involving the A-site cations in Ln3+Mn3V4O12 perovskites, Inorg. Chem 53 (2014), pp. 594–599.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation Effects. Phys. Rev 140 (1965), pp. A1133–A1138. doi: 10.1103/PhysRev.140.A1133
  • O.K. Andersen, Linear methods in band theory. Phys. Rev. B 12 (1975), pp. 3060–3083. doi: 10.1103/PhysRevB.12.3060
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett 100 (2008), pp. 136406–4. doi: 10.1103/PhysRevLett.100.136406
  • P.D. Patel, S. Shinde, S.D. Gupta, S.D. Dabhi, and P.K. Jha, The first principle calculation of structural, electronic, magnetic, elastic, thermal and lattice dynamical properties of fully compensated ferrimagnetic spin-gapless heusler alloy Zr2MnGa, Comput. Condens. Matter 15(2018), pp. 61–68.
  • N.N. Som, P.M.W.P. Sampath, S.D. Dabhi, V. Mankad, S. Shinde, M.L.C. Attygalle, and P.K. Jha, Strain and layer modulated electronic and optical properties of low dimensional perovskite methylammonium lead iodide: Implications to solar cells. Sol. Energy 173 (2018), pp. 1315–1322. doi: 10.1016/j.solener.2018.06.052
  • P.D. Patel, S. Shinde, S.D. Gupta, and P.K. Jha, Investigation of structural and elastic stability, electronic, magnetic, thermoelectric, lattice-dynamical and thermodynamical properties of spin gapless semiconducting Heusler alloy Zr2MnIn using DFT approach. J. Elec. Mater 48 (2019), pp. 1634–1642. doi: 10.1007/s11664-018-06911-y
  • A.G. Petukhov, I.I. Mazin, L. Chloncel, and A.I. Lichtenstein, Correlated metals and the LDA + U method. Phys. Rev. B 67(15) (2003), pp. 153106. (1–4). doi: 10.1103/PhysRevB.67.153106
  • P. Novak, J. Kunes, L. Chaput, and W.E. Pickett, Exact exchange for correlated electrons. Phys. Stat. Sol. B 243 (2006), pp. 563–572. doi: 10.1002/pssb.200541371
  • V.I. Anisimov and O. Gunnarsson, Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43 (1991), pp. 7570–7574. doi: 10.1103/PhysRevB.43.7570
  • P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and L. D. Marks, WIEN2k, An augmented plane wave + local orbitals program for calculating crystal properties, (Karlheinz Schwarz, Techn. Universität Wien, Austria), 2018. ISBN 3-9501031-1-2
  • J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23 (1981), pp. 5048–5079. doi: 10.1103/PhysRevB.23.5048
  • G.K.H. Madsen, D.J. Singh, and B. Trap, A code for calculating band-structure dependent quantities. Comput. Phys. Commun 175 (2006), pp. 67–71. doi: 10.1016/j.cpc.2006.03.007
  • F. Birch, Finite elastic strain of cubic crystals. Phys. Rev 71(11) (1947), pp. 809–824. doi: 10.1103/PhysRev.71.809
  • Z. Ali, I. Khan, I. Ahmad, M.S. Khan, and S.J. Asadabadi, Theoretical studies of the paramagnetic perovskites MTaO3 (M = Ca, Sr and Ba). Mater. Chem. Phys 162 (2015), pp. 308–315. doi: 10.1016/j.matchemphys.2015.05.072
  • V.M. Goldschmidt, Geochemistry, Oxford University Press, Oxford London, 1958.
  • N. Xu, H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, and F. Li, Dependence of critical radius of the cubic perovskite ABO3 oxides on the radius of A- and B-site cations. Int. J. Hydrogen Energy 35 (2010), pp. 7295–7301. doi: 10.1016/j.ijhydene.2010.04.149
  • G. Shimura, K. Niwa, Y. Shirako, and M. Hasegawa, High-pressure syntheses and magnetic behaviors of A-site columnar ordered double perovskites, LnMn(Ga0.5Ti0.5)2O6 (Ln = Sm, Gd). Eur. J. Inorg. Chem 4 (2017 ), pp. 835–839. doi: 10.1002/ejic.201601392
  • C. Zener, Interaction between the d shells in the transition metals. Phys. Rev 81 (1951), pp. 440–444. doi: 10.1103/PhysRev.81.440
  • S. Blundell, Magnetism in Condensed Matter, Oxford University Press, New York, 2001.
  • J. Jensen and A.R. Mackintosh, Rare Earth Magnetism Structure and Excitations, University of Copenhagen Clardendon Press, Oxford, 1991.
  • A.H. Morrish, The Physical Principles of Magnetism, IEEE Press, New Jersey, 2001.
  • C. Heck, Magnetic Materials and Their Applications, Butterworth and Co. Ltd, London, 1974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.