278
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Modelling the cyclic torsion of polycrystalline micron-sized copper wires by distortion gradient plasticity

ORCID Icon & ORCID Icon
Pages 2352-2364 | Received 13 Mar 2020, Accepted 04 May 2020, Published online: 20 May 2020

References

  • M.F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag. 21 (1970), pp. 399–424. doi: 10.1080/14786437008238426
  • N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Strain gradient plasticity: Theory and experiments, Acta Metall. Mater. 42 (1994), pp. 475–487. doi: 10.1016/0956-7151(94)90502-9
  • N.A. Fleck and J.W. Hutchinson, Strain gradient plasticity, Adv. Appl. Mech. 33 (1997), pp. 295–361. doi: 10.1016/S0065-2156(08)70388-0
  • J. Bishop and R. Hill, A theory of plastic distortion of a polycrystalline aggregate under combined stress, Philos. Mag. 42 (1951), pp. 414–427. doi: 10.1080/14786445108561065
  • M.E. Gurtin, A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin, J. Mech. Phys. Solids 52 (2004), pp. 2545–2568. doi: 10.1016/j.jmps.2004.04.010
  • M.E. Gurtin and A. Needleman, Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector, J. Mech. Phys. Solids 53 (2005), pp. 1–31. doi: 10.1016/j.jmps.2004.06.006
  • L. Bardella and A. Giacomini, Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity, J. Mech. Phys. Solids 56 (2008), pp. 2906–2934. doi: 10.1016/j.jmps.2008.04.001
  • L. Bardella, A comparison between crystal and isotropic strain gradient plasticity theories with accent on the role of the plastic spin, Eur. J. Mech. A Solid. 28 (2009), pp. 638–646. doi: 10.1016/j.euromechsol.2008.10.006
  • J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1 (1953), pp. 153–162. doi: 10.1016/0001-6160(53)90054-6
  • E. Kröner, Dislocations and continuum mechanics, Appl. Mech. Rev. 15 (1962), pp. 599–606.
  • A. Arsenlis and D.M. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density, Acta Mater. 47 (1999), pp. 1597–1611. doi: 10.1016/S1359-6454(99)00020-8
  • A. Panteghini, L. Bardella, and C.F. Niordson, A potential for higher-order phenomenological strain gradient plasticity to predict reliable response under non-proportional loading, Proc. R. Soc. A 475 (2019), p. 20190258. doi: 10.1098/rspa.2019.0258
  • L. Bardella and A. Panteghini, Modelling the torsion of thin metal wires by distortion gradient plasticity, J. Mech. Phys. Solids 78 (2015), pp. 467–492. doi: 10.1016/j.jmps.2015.03.003
  • B. Svendsen and S. Bargmann, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation, J. Mech. Phys. Solids 58 (2010), pp. 1253–1271. doi: 10.1016/j.jmps.2010.06.005
  • S. Forest and N. Guéninchault, Inspection of free energy functions in gradient crystal plasticity, Acta Mech. Sin. 29 (2013), pp. 763–772. doi: 10.1007/s10409-013-0088-0
  • I. Groma, F.F. Csikor, and M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Mater. 51 (2003), pp. 1271–1281. doi: 10.1016/S1359-6454(02)00517-7
  • I. Groma, G. Györgyi, and B. Kocsis, Dynamics of coarse grained dislocation densities from an effective free energy, Philos. Mag. 87 (2007), pp. 1185–1199. doi: 10.1080/14786430600835813
  • N. Ohno and D. Okumura, Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations, J. Mech. Phys. Solids 55 (2007), pp. 1879–1898. doi: 10.1016/j.jmps.2007.02.007
  • L. Bardella, Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin, Int. J. Eng. Sci. 48 (2010), pp. 550–568. doi: 10.1016/j.ijengsci.2010.01.003
  • D. Liu, Y. He, D.J. Dunstan, B. Zhang, Z. Gan, P. Hu, and H. Ding, Anomalous plasticity in cyclic torsion of micron scale metallic wires, Phys. Rev. Lett. 110 (2013), p. 244301.
  • S. Guo, Y. He, J. Lei, Z. Li, and D. Liu, Individual strain gradient effect on torsional strength of electropolished microscale copper wires, Scripta Mater. 130 (2017), pp. 124–127. doi: 10.1016/j.scriptamat.2016.11.029
  • N. Ohno, A constitutive model of cyclic plasticity with a non-hardening strain region. J. Appl. Mech. 49 (1982), pp. 721–727. doi: 10.1115/1.3162603
  • J. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plast. 5 (1989), pp. 247–302. doi: 10.1016/0749-6419(89)90015-6
  • S. Forest and R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua, Acta Mech. 160 (2003), pp. 71–111. doi: 10.1007/s00707-002-0975-0
  • N.A. Fleck, J.W. Hutchinson, and J.R. Willis, Guidelines for constructing strain gradient plasticity theories, J. Appl. Mech. 82 (2015), pp. 071002-1–071002-10. doi: 10.1115/1.4030323
  • C. Carstensen, F. Ebobisse, A.T. McBride, B.D. Reddy, and P. Steinmann, Some properties of the dissipative model of strain-gradient plasticity, Philos. Mag. 97 (2017), pp. 693–717. doi: 10.1080/14786435.2016.1274836
  • N.A. Fleck, J.W. Hutchinson, and J.R. Willis, Strain gradient plasticity under non-proportional loading, Proc. R. Soc. A 470 (2014), p. 20140267. doi: 10.1098/rspa.2014.0267
  • Dassault Systèmes. ABAQUS User's & Theory Manuals – Release 6.13-1, Providence, RI. 2013.
  • Y. Jiang and H. Sehitoglu, Modeling of cyclic ratchetting plasticity, part ii: Comparison of model simulations with experiments, J. Appl. Mech. 63 (1996), pp. 726–733. doi: 10.1115/1.2823356
  • Y. Jiang and P. Kurath, Characteristics of the Armstrong-Frederick type plasticity models, Int. J. Plast. 12 (1996), pp. 387–415. doi: 10.1016/S0749-6419(96)00013-7
  • M. Abdel-Karim and N. Ohno, Kinematic hardening model suitable for ratchetting with steady-state, Int. J. Plast. 16 (2000), pp. 225–240. doi: 10.1016/S0749-6419(99)00052-2
  • Dakota, available at https://dakota.sandia.gov/sites/default/files/docs/6.0/html-ref/topic-package_coliny.html.
  • D. Peirce, R.J. Asaro, and A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta Metall. 31 (1983), pp. 1951–1976. doi: 10.1016/0001-6160(83)90014-7
  • A. Panteghini and L. Bardella, On the finite element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility. Comput. Method. Appl. Mech. Eng. 310 (2016), pp. 840–865. doi: 10.1016/j.cma.2016.07.045
  • A. Panteghini and F. Genna, Numerical integration of a pressure-dependent, non-linear kinematic hardening constitutive model for large strain cyclic plasticity of metals. Int. J. Numer. Methods Eng. 89 (2012), pp. 1047–1067. doi: 10.1002/nme.3290
  • R. Kreißig, U. Benedix, and U.-J. Görke, Statistical aspects of the identification of material parameters for elasto-plastic models, Arch. Appl. Mech. 71 (2001), pp. 123–134. doi: 10.1007/s004190000106
  • Y.F. Dafalias, Plastic spin: Necessity or redundancy? Int. J. Plast. 14 (1998), pp. 909–831. doi: 10.1016/S0749-6419(98)00036-9
  • D. Liu, Y. He, D.J. Dunstan, B. Zhang, Z. Gan, P. Hu, and H. Ding, Toward a further understanding of size effects in the torsion of thin wires: An experimental and theoretical assessment. Int. J. Plast. 41 (2013), pp. 30–52. doi: 10.1016/j.ijplas.2012.08.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.