416
Views
4
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Synthesis, structure, and physical properties of bilayer molybdate Sr3Mo2O7 with flat-band

, , , &
Pages 2402-2415 | Received 12 Jul 2019, Accepted 04 May 2020, Published online: 23 May 2020

References

  • D. van Delft and P. Kes, The discovery of superconductivity, Phys. Today 63 (2010), pp. 38–43. doi: 10.1063/1.3490499
  • Q. Si and F. Steglich, Heavy fermions and quantum phase transitions, Science 329 (2010), pp. 1161–1166. doi: 10.1126/science.1191195
  • M. Dressel, Quantum criticality in organic conductors? Fermi liquid versus non-Fermi-liquid behaviour, J. Phys.: Condens. Matter 23 (2011), p. 293201.
  • J.G. Bednorz and K.A.Z. Müller, Possible high-TC superconductivity in the Ba-La-Cu-O system, Z. Phys. B Condens. Matter 64 (1986), pp. 189–193. doi: 10.1007/BF01303701
  • Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x= 0.05–0.12) with Tc=26K, J. Am. Chem. Soc. 130 (2008), pp. 3296–3297. doi: 10.1021/ja800073m
  • M. Imada and M. Kohno, Superconductivity from flat dispersion designed in doped Mott insulators, Phys. Rev. Lett. 84 (2000), pp. 143–146. doi: 10.1103/PhysRevLett.84.143
  • S. Peotta and P. Törmä, Superfluidity in topologically nontrivial flat bands, Nat. Commun. 6 (2015), p. 8944. doi: 10.1038/ncomms9944
  • V.I. Iglovikov, F. Hébert, B. Grémaud, G.G. Batrouni, and R.T. Scalettar, Superconducting transitions in flat-band systems, Phys. Rev. B 90 (2014), p. 094506. doi: 10.1103/PhysRevB.90.094506
  • N.B. Kopnin, T.T. Heikkilä, and G.E. Volovik, High-temperature surface superconductivity in topological flat-band systems, Phys. Rev. B 83 (2011), p. 220503(R). doi: 10.1103/PhysRevB.83.220503
  • K. Kobayashi, M. Okumura, S. Yamada, M. Machida, and H. Aoki, Superconductivity in repulsively interacting fermions on a diamond chain: Flat-band-induced pairing, Phys. Rev. B 94 (2016), p. 214501.
  • J. Bekaert, M. Petrov, A. Aperis, P.M. Oppeneer, and M.V. Milošević. Hydrogen-induced high-temperature superconductivity in two-dimensional materials: The example of hydrogenated monolayer MgB2, Phys. Rev. Lett. 123 (2019), p. 077001.
  • S.-W. Cheong, Transition metal oxides: The exciting world of orbitals, Nat. Mater. 6 (2007), pp. 927–928. doi: 10.1038/nmat2069
  • A.P. Ramirez, Colossal magnetoresistance, J. Phys.: Condens. Matter 9 (1997), pp. 8171–8199.
  • S.-W. Cheong and M. Mostovoy, Multiferroics: A magnetic twist for ferroelectricity, Nat. Mater. 6 (2007), pp. 13–20. doi: 10.1038/nmat1804
  • Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg, Superconductivity in a layered perovskite without copper, Nature 372 (1994), pp. 532–534. doi: 10.1038/372532a0
  • B.V. Beznosikov and K.S. Aleksandrov, Perovskite-like crystals of the Ruddlesden–Popper series, Crystallogr. Rep. 45 (2000), pp. 792–798. doi: 10.1134/1.1312923
  • A. Nozaki, H. Yoshikawa, T. Wada, H. Yamauchi, and S. Tanaka, Layered perovskite compounds Srn+1VnO3n+1 (n=1,2, and ∞), Phys. Rev. B 43 (1991), pp. 181–185. doi: 10.1103/PhysRevB.43.181
  • J. Jeanneau, P. Toulemonde, G. Remenyi, A. Sulpice, C. Colin, V. Nassif, E. Suard, E. Salas Colera, G.R. Castro, F. Gay, C. Urdaniz, R. Weht, C. Fevrier, A. Ralko, C. Lacroix, A.A. Aligia, and M. Nunez-Regueiro, Singlet orbital ordering in bilayer Sr3Cr2O7, Phys. Rev. Lett. 118 (2017), p. 207207. doi: 10.1103/PhysRevLett.118.207207
  • B.J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4, Science 323 (2009), pp. 1329–1332. doi: 10.1126/science.1167106
  • G. Cao, Y. Xin, C.S. Alexander, J.E. Crow, P. Schlottmann, M.K. Crawford, R.L. Harlow, and W. Marshall, Anomalous magnetic and transport behavior in the magnetic insulator Sr3Ir2O7, Phys. Rev. B 66 (2002), p. 214412.
  • C. Stingl, R.S. Perry, Y. Maeno, and P. Gegenwart, Symmetry-breaking lattice distortion in Sr3Ru2O7, Phys. Rev. Lett. 107 (2011), p. 026404. doi: 10.1103/PhysRevLett.107.026404
  • N. Shirakawa and S.I. Ikeda, The synthesis and basic physical properties of a layered molybdenum perovskite Sr2MoO4, Physica C 364 (2011), pp. 309–312.
  • S. Hayashi, R. Aoki, and T. Nakamura, Metallic conductivity in perovskite-type compounds AMoO3 (A=Ba,Sr,Ca) down to 2.5K, Mater. Res. Bull. 14 (1979), pp. 409–413. doi: 10.1016/0025-5408(79)90107-7
  • I. Nagai, N. Shirakawa, S.-I. Ikeda, R. Iwasaki, H. Nishimura, and M. Kosaka, Highest conductivity oxide SrMoO3 grown by a floating-zone method under ultralow oxygen partial pressure, Appl. Phys. Lett. 87 (2005), p. 024105.
  • S. Kouno, N. Shirakawa, I. Nagai, N. Umeyama, Kazuyasu Tokiwaa, and Tsuneo Watanabea, The synthesis and characterization of double-layered perovskite Sr3Mo2O7, J. Phys. Soc. Jpn. 76 (2007), p. 094706. doi: 10.1143/JPSJ.76.094706
  • S. Kouno, N. Shirakawa, I. Nagai, N. Umeyama, Kazuyasu Tokiwaa, and Tsuneo Watanabea, The synthesis of a quasi-2D metal oxide Sr3Mo2O7, Physica B 403 (2008), pp. 1029–1031. doi: 10.1016/j.physb.2007.10.083
  • K. Kuroki, T. Higashida, and R. Arita, High-TC superconductivity due to coexisting wide and narrow bands: A fluctuation exchange study of the Hubbard ladder as a test case, Phys. Rev. B 72 (2005), p. 212509. doi: 10.1103/PhysRevB.72.212509
  • D. Ogura, H. Aoki, and K. Kuroki, Possible high-Tc superconductivity due to incipient narrow bands originating from hidden ladders in Ruddlesden–Popper compounds, Phys. Rev. B 96 (2017), p. 184513. doi: 10.1103/PhysRevB.96.184513
  • N. Shirakawa, S.I. Ikeda, H. Matsuhata, and H. Bando, An improved method for obtaining single-phase Sr2MoO4 under controlled ultralow oxygen partial pressure, Jpn. J. Appl. Phys. 40 (2001), pp. L741–L743. doi: 10.1143/JJAP.40.L741
  • H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, Thermodynamic stability of perovskites and related compounds in some alkaline earth-transition metal-oxygen systems, J. Solid State Chem. 94 (1991), pp. 106–120. doi: 10.1016/0022-4596(91)90225-7
  • K. Momma and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (2008), pp. 653–658. doi: 10.1107/S0021889808012016
  • H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr.2 (1969), pp. 65–71. doi: 10.1107/S0021889869006558
  • R.W. Cheary and A. Coelho, A fundamental parameters approach to X-ray line-profile fitting, J. Appl. Crystallogr. 25 (1992), pp. 109–121. doi: 10.1107/S0021889891010804
  • E. Wang, J. Si, X. Zhu, G.-Y. Chen, and H.-H. Wen, Pressure induced superconductivity in the compound ScZrCo, New J. Phys. 20 (2018), p. 073036.
  • N. Shirakawa and S.I. Ikeda, Phase-relations study of Sr-Mo-O system for new superconductors search, Physica C 341 (2000), pp. 783–784. doi: 10.1016/S0921-4534(00)00691-2
  • V.V. Poltavets, K.A. Lokshin, S. Dikmen, M. Croft, T. Egami, and M. Greenblatt, La3Ni2O6: A new double T'-type nickelate with infinite Ni1+/2+O2 layers, J. Am. Chem. Soc. 128 (2006), pp. 9050–9051. doi: 10.1021/ja063031o
  • V.V. Poltavets, K.A. Lokshin, T. Egami, and M. Greenblatt, The oxygen deficient Ruddlesden–Popper La3Ni2O7−δ (δ=0.65) phase: Structure and properties, Mater. Res. Bull. 41 (2006), pp. 955–960. doi: 10.1016/j.materresbull.2006.01.028
  • N. Shirakawa, K. Murata, H. Makino, F. Iga, and Y. Nishihara, Scaling of negative magnetoresistance and extraordinary hall effect in CaVO3−δ, J. Phys. Soc. Jpn. 64 (1995), pp. 4824–4833. doi: 10.1143/JPSJ.64.4824
  • S.B. Roy, M.K. Chattopadhyay, P. Chaddah, J.D. Moore, G.K. Perkins, L.F. Cohen, K.A. Gschneidner, Jr., and V.K. Pecharsky, Evidence of a magnetic glass state in the magnetocaloric material Gd5Ge4, Phys. Rev. B 74 (2006), p. 012403.
  • S.B. Roy, G.K. Perkins, M.K. Chattopadhyay, A.K. Nigam, K.J.S. Sokhey, P. Chaddah, A.D. Caplin, and L.F. Cohen, First order magnetic transition in doped CeFe2 alloys: Phase coexistence and metastability, Phys. Rev. Lett. 92 (2004), p. 147203. doi: 10.1103/PhysRevLett.92.147203
  • M.A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96 (1954), pp. 99–102. doi: 10.1103/PhysRev.96.99
  • J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals, J. Phys. Chem. Solids 10 (1959), pp. 87–98. doi: 10.1016/0022-3697(59)90061-7
  • N. Morton, B.W. James, G.H. Wostenholm, D.G. Pomfret, M.R. Davies, and J.L. Dykins, Superconductivity of molybdenum and tungsten carbides, J. Less-Common Metals 25 (1971), pp. 97–106. doi: 10.1016/0022-5088(71)90070-1
  • J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32 (1964), pp. 37–49. doi: 10.1143/PTP.32.37
  • M.W. Lufaso and P.M. Woodward, Jahn–Teller distortions, cation ordering and octahedral tilting in perovskites, Acta Cryst. B 60 (2004), pp. 10–20. doi: 10.1107/S0108768103026661
  • N. Andrei, K. Furuya, and J.H. Lowenstein, Solution of the Kondo problem, Rev. Mod. Phys. 55 (1983), pp. 331–402. doi: 10.1103/RevModPhys.55.331

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.