213
Views
3
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Half-metallic ferromagnetism in cubic perovskite type NdInO3

ORCID Icon
Pages 2524-2539 | Received 02 Apr 2020, Accepted 27 May 2020, Published online: 12 Jun 2020

References

  • S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova and D.M. Treger, Spintronics: A spin-based electronics vision for the future. Science 294 (2001), pp. 1488–1495. doi: 10.1126/science.1065389
  • R.A. de Groot, F.M. Mueller, P.G. van Engen and K.H.J. Buschow, New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett 50 (1983), pp. 2024–2027. doi: 10.1103/PhysRevLett.50.2024
  • R.J. Soulen Jr, J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, A. Barry and J.M.D. Coey, Measuring the spin polarization of a metal with a superconducting point contact. Science 282 (1998), pp. 85–88. doi: 10.1126/science.282.5386.85
  • J.H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh and T. Venkatesan, Direct evidence for a half-metallic ferromagnet. Nature (Lond) 392 (1998), pp. 794–796. doi: 10.1038/33883
  • K.L. Kobayashi, T. Kimura, H. Sawada, K. Terakuraand and Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395 (1998), pp. 677–680. doi: 10.1038/27167
  • F.J. Jedema, A.T. Filip and B.V. Wees, Electrical spin injection and accumulation at room temperature in an all metal mesoscopic spin valve. Nature 410 (2001), pp. 345–348. doi: 10.1038/35066533
  • S.P. Lewis, P.B. Allen and T. Sasaki, Band structure and transport properties of CrCO2. Phys. Rev. B 55 (1997), pp. 10253–10260. doi: 10.1103/PhysRevB.55.10253
  • T. Jungwirth, J. Sinova, J. Mašek, J. Kučera and A.H. Mac Donald, Theory of ferromagnetic (III, Mn)V semiconductors. Rev. Mod. Phys 78 (2006), pp. 809–864. doi: 10.1103/RevModPhys.78.809
  • L.-J. Shi and B.-G. Liu, Half-metallic ferromagnetism in hexagonal MAl7N8 and cubic MAl3N4 (M = Cr and Mn) from first-principles Phys. Rev. B 76 (2007), pp. 115201. doi: 10.1103/PhysRevB.76.115201
  • Y.-H. Zhao, W.-H. Xie, L.-F. Zhu and B.-G. Liu, Half-metallic ferromagnets based on the rock-salt IV–VI semiconductor GeTe. J. Phys.: Condens. Matter 18 (2006), pp. 10259–10268.
  • W.-H. Xie and B.-G. Liu, Half-metallic ferromagnetism in ternary transition-metal compounds based on ZnTe and CdTe semiconductors. J. Appl. Phys 96 (2004), pp. 3559–3561. doi: 10.1063/1.1780607
  • Y. Liu and B.-G. Liu, First-principles study of half-metallic ferromagnetism and structural stability of CrxZn1−xTe. J. Phys. D: Appl. Phys 40 (2007), pp. 6791–6796. doi: 10.1088/0022-3727/40/21/045
  • T.M. Giebultowicz, P. Klosowski, N. Samarth and J.K. Furdyna, Neutron-diffraction studies of zinc-blende MnTe epitaxial films and MnTe/ZnTe superlattices: The effect of strain and dilution on a strongly frustrated fcc antiferromagnet. Phys. Rev. B 48 (1993), pp. 12817–12833. doi: 10.1103/PhysRevB.48.12817
  • H. Saito, V. Zayets, S. Yamagata and K. Ando, Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn1–xCrxTe. Phys. Rev. Lett 90 (2003), pp. 207202. doi: 10.1103/PhysRevLett.90.207202
  • M.G. Sreenivasan, J.F. Bi, K.L. Teo and T. Liew, Systematic investigation of structural and magnetic properties in molecular beam epitaxial growth of metastable zinc-blende CrTe toward half-metallicity. J. Appl. Phys 103 (2008), pp. 043908. (pp. 1-5). doi: 10.1063/1.2885108
  • I. Galanakis, Orbital magnetism in the half-metallic Heusler alloys. Phys. Rev. B 71 (2005), pp. 012413. doi: 10.1103/PhysRevB.71.012413
  • S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser and H.-J. Lin, Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment. Appl. Phys. Lett 88 (2006), pp. 032503. doi: 10.1063/1.2166205
  • M. El Amine Monir, H. Baltache, R. Khenata, G. Murtaza, S. Azam, A. Bouhemadou, Y. Al-Douri, S. Bin Omran and R. Ali, First-principles calculations of a half-metallic ferromagnet zincblende Zn1−xVxTe. J. Magn. Magn. Mater 378 (2015), pp. 41–49. doi: 10.1016/j.jmmm.2014.10.070
  • M. El Amine Monir, H. Baltache, G. Murtaza, R. Khenata, W.K. Ahmed, A. Bouhemadou, S. Bin Omran and T. Seddik, Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe. J. Magn. Magn. Mater 374 (2015), pp. 50–60. doi: 10.1016/j.jmmm.2014.08.014
  • M. El Amine Monir, R. Khenata, G. Murtaza, H. Baltache, A. Bouhemadou, S. Azam, Y. Al-Douri, S. Bin Omran and H. Ud Din, Half-metallic ferromagnetism in Be1−xVxTe alloys: an Ab-initio study. Indian J. Phys 89 (2015), pp. 1251–1263. doi: 10.1007/s12648-015-0696-6
  • M. El Amine Monir, H. Ullah, H. Baltach, M. Gulbahar Ashiq and R. Khenata, Mechanical and magneto-electronic properties of half-metallic ferromagnetism in Ti-doped ZnSe and CdSe alloys: Ab initio study. J. Magn. Magn. Mater 442 (2017), pp. 107–117. doi: 10.1016/j.jmmm.2017.06.093
  • M. El Amine Monir, H. Baltache, R. Khenata, G. Murtaza, R. Ahmed, W.K. Ahmed, S. Bin Omran and A. Bouhemadou, Half-metallicity and optoelectronic properties of V-doped zincblende ZnS and CdS alloys. Int. J. Mod. Phys. B 30 (2016), pp. 1650034. (pp. 1–18). doi: 10.1142/S021797921650034X
  • M. El Amine Monir, A. Bahnes, A. Boukortt, A.B. Reguig and Y. Mouchaal, Density functional theory investigation of half-metallic ferromagnetism in V-doped GaP alloys. J. Magn. Magn. Mater 497 (2020), pp. 166067. doi: 10.1016/j.jmmm.2019.166067
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964), pp. B864–B871. doi: 10.1103/PhysRev.136.B864
  • K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang and Y. Lei, First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces. J. Appl. Phys 113 (2013), pp. 014304. doi: 10.1063/1.4772647
  • K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat and Y. Lei, Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations. J. Appl. Phys 114 (2013), pp. 034901. doi: 10.1063/1.4813517
  • P. Blaha, K. Schwarz, P. Sorantin and S.K. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun 59 (1990), pp. 339–415. doi: 10.1016/0010-4655(90)90187-6
  • J.P. Perdew, S. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk and G.A. Sawatzky, Density-functional theory and NiO photoemission spectra. Phys. Rev. B. 48 (1993), pp. 16929–16934. doi: 10.1103/PhysRevB.48.16929
  • F.S. Galasso, Perovskites and High Tc Superconductors, Gordon and Breach, New York, 1990.
  • Z.L. Wang and Z.C. Kang, Functional and Smart Materials: Structural Evolution and Structure Analysis, Plenum Press, New York, 1998.
  • H.C. Chen, Crystal Chemistry, Shandong Education Press, Jinan, 1985. In Chinese.
  • F.S. Galasso, Perovskites and High Tc Superconductors, Gordon and Breach, New York, 1990.
  • W. Marti, M. Medarde, S. Rosenkranz, P. Fischer, A. Furrer and C. Klemenz, Hyperfine-enhanced nuclear polarization in NdGaO3. Phys. Rev. B 52 (1995), pp. 4275. doi: 10.1103/PhysRevB.52.4275
  • I. Plaza, E. Palacios, J. Bartolomé, S. Rosenkranz, C. Ritter and A. Furrer, Neutron diffraction study of the magnetic ordered Nd3+ in NdCoO3 and NdlnO3 below 1 K. Physica B 234–236 (1997), pp. 632–634. doi: 10.1016/S0921-4526(96)01066-6
  • F. Bartolomé, M.D. Kuz'min, R.I. Merino and J. Bartolomé, Spin =1/2 xy magnetic-ordering of Nd3+ ions in NdGaO3. IEEE Trans. Magn 30 (1994), pp. 960–962. doi: 10.1109/20.312458
  • E.F. Bertaut, G.T. Rado and H. Suhl (eds.), Magnetism. Vol. III, Academic Press, New York, 1963.
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci 30 (1944), pp. 244–247. doi: 10.1073/pnas.30.9.244
  • S.L. Shang, Y. Wang, D. Kim and Z.-K. Liu, First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Comput. Mater. Sci 47 (2010), pp. 1040–1048. doi: 10.1016/j.commatsci.2009.12.006
  • J. Wang and Y. Zhou, Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M = Ti, V, Nb, and Cr) ceramics. Phys. Rev. B 69(21) (2004), pp. 214111. doi: 10.1103/PhysRevB.69.214111
  • G. Chen, X.Q. Wang, K. Fu, X. Rong, H. Hashimoto, B.S. Zhang, F.J. Xu, N. Tang, A. Yoshikawa, W.K. Ge, et al., Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells. Appl. Phys. Lett 104(17) (2014), pp. 172108. doi: 10.1063/1.4874982
  • O. Gunnarsson, O.K. Andersen, O. Jepsen and J. Zaanen, Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe. Phys. Rev. B 39 (1989), pp. 1708–1722. doi: 10.1103/PhysRevB.39.1708
  • Z.H. Zeng, F. Calle-Vallejo, M.B. Mogensen and J. Rossmeisl, Generalized trends in the formation energies of perovskite oxides. Phys. Chem. Chem. Phys 15 (2013), pp. 7526–7533. doi: 10.1039/c3cp50257k
  • D.P. Rai, A. Shankar, Sandeep, M.P. Ghimire, R. Khenata, and R.K. Thapa, Study of the enhanced electronic and thermoelectric (TE) properties of ZrxHf1−x−yTayNiSn: a first principles study, RSC Adv. 5 (2015), pp. 95353–95359. doi: 10.1039/C5RA12897H
  • C.B. Barber, D.P. Dobkin and H. Huhdanpaa, The quickhull algorithm for convex hulls. ACM Trans. Math. Softw 22 (1996), pp. 469–483. doi: 10.1145/235815.235821
  • A.R. Akbarzadeh, V. Ozolins and C. Wolverton, First-principles determination of multicomponent hydride phase diagrams: Application to the Li-Mg-N-H system. Adv. Mater 19 (2007), pp. 3233–3239. doi: 10.1002/adma.200700843
  • A.S. Verma and V.K. Jindal, Lattice constant of cubic perovskites. J. Alloys Compd 485 (2009), pp. 514–518. doi: 10.1016/j.jallcom.2009.06.001
  • R.L. Moreira and A. Dias, Comment on “prediction of lattice constant in cubic perovskites”. J. Phys. Chem. Solids 68 (2007), pp. 1617–1622. doi: 10.1016/j.jpcs.2007.03.050
  • K. Yang, S. Nazir, M. Behtash and J. Cheng, High-throughput design of two-dimensional electron gas systems based on polar/nonpolar perovskite oxide heterostructures. Sci. Rep. 6 (2016), pp. 34667. doi: 10.1038/srep34667
  • S.A. Dar, V. Srivastava, U.K. Sakalle and S.A. Khandy, Ab Initio investigation on electronic, magnetic, mechanical, and thermodynamic properties of AMO3 (A = Eu, M = Ga, In) perovskites. J. Supercond. Nov. Magn. 31 (2018), pp. 1549–1558. doi: 10.1007/s10948-017-4365-1
  • M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 1956.
  • J. Wang, S. Yip, S.R. Phillpot and D. Wolf, Crystal instabilities at finite strain. Phys. Rev. Lett 71 (1993), pp. 4182. doi: 10.1103/PhysRevLett.71.4182
  • K.L. Yao, G.Y. Gao, Z.L. Liu and L. Zhu, Half-metallic ferromagnetism of zinc-blende CrS and CrP: A first-principles pseudopotential study. Solid State Commun. 133 (2005), pp. 301–304. doi: 10.1016/j.ssc.2004.11.016
  • G.Y. Gao, K.L. Yao, E. Sasioglu, L.M. Sandratskii, Z.L. Liu and J.L. Jiang, Half-metallic ferromagnetism in zinc-blende CaC, SrC, and BaC from first principles. Phys. Rev. B 75 (2007), pp. 174442. doi: 10.1103/PhysRevB.75.174442

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.