297
Views
15
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Clarifying the nature of the Johari-Goldstein β-relaxation and emphasising its fundamental importance

ORCID Icon, , &
Pages 2596-2613 | Received 14 Oct 2019, Accepted 05 Jun 2020, Published online: 20 Jun 2020

References

  • K.L. Ngai, J. Habasaki, D. Prevosto, S. Capaccioli, and M. Paluch, Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model. J. Chem. Phys. 137 (2012), pp. 1–13. 034511, ibid. 2014, 140, 019901. doi: 10.1063/1.4736547
  • M. Mierzwa, S. Pawlus, M. Paluch, E. Kaminska, and K.L. Ngai, Correlation between Primary and secondary Johari−goldstein relaxations in Supercooled liquids: invariance to changes in thermodynamic conditions. J. Chem. Phys 128 (2008), pp. 1–4. 044512. doi: 10.1063/1.2828496
  • T.C. Ransom, D. Fragiadakis and C.M. Roland, The α and Johari−goldstein relaxations in 1,4-polybutadiene: breakdown of Isochronal Superpositioning. Macromolecules 51 (2018), pp. 4694–4698. doi: 10.1021/acs.macromol.8b00664
  • K. Kessairi, S. Capaccioli, D. Prevosto, M. Lucchesi, S. Sharifi and P.A. Rolla, Interdependence of Primary and Johari−goldstein secondary relaxations in glass-Forming systems. J. Phys. Chem. B 112 (2008), pp. 4470–4476. doi: 10.1021/jp800764w
  • K.L. Ngai, R. Casalini, S. Capaccioli, M. Paluch and C.M. Roland, Do theories of the glass transition, in which the structural relaxation time does not define the dispersion of the structural relaxation, need revision? J. Phys. Chem. B 109 (2005), pp. 17356–17361. doi: 10.1021/jp053439s
  • K.L. Ngai, R. Casalini, S. Capaccioli, M. Paluch and C.M. Roland, Dispersion of the Structural Relaxation and the Vitrification of Liquids ( Chapter 10, 133, pp. 497–585), Adv. Chem. Phys. Part B, Wiley, New York, NY, 2006.
  • S. Capaccioli, M. Paluch, D. Prevosto, K.L. Li-Min Wang and J. Ngai, Many-Body nature of relaxation processes in glass-Forming systems. J. Phys. Chem. Lett 3 (2012), pp. 735–743. doi: 10.1021/jz201634p
  • K.L. Ngai, The vestige of many-body dynamics in relaxation of glass-forming substances and other interacting systems. Philos. Mag 87 (2007), pp. 357–362. doi: 10.1080/14786430600900112
  • D. Prevosto, S. Capaccioli, M. Lucchesi, S. Sharifi, K. Kessairi and K.L. Ngai, Relationship between structural and secondary relaxation in glass formers: ratio between glass transition temperature and activation energy. Philos. Mag 88 (2008), pp. 4063–4069. doi: 10.1080/14786430802389205
  • D. Prevosto, S. Capaccioli, M. Lucchesi, P.A. Rolla and K.L. Ngai, Does the entropy and volume dependence of the structural alpha-relaxation originate from the Johari-Goldstein beta-relaxation? J. Non-Cryst. Solids 355 (2009), pp. 705–711. doi: 10.1016/j.jnoncrysol.2008.09.043
  • S. Capaccioli, M. Shahin Thayyil and K.L. Ngai, Critical Issues of Current Research on the dynamics Leading to glass transition. J. Phys. Chem. B 112 (2008), pp. 16035–16049. doi: 10.1021/jp8057433
  • D. Bedrov and G.D. Smith, Secondary Johari-Goldstein relaxation in linear polymer melts represented by a simple bead-necklace model. J. Non-Cryst. Solids 357 (2011), pp. 258–263. doi: 10.1016/j.jnoncrysol.2010.06.043
  • M.S. Thayyil, K.L. Ngai, D. Prevosto and S. Capaccioli, Revealing the rich dynamics of glass-forming systems by modification of composition and change of thermodynamic conditions. J. Non-Cryst. Solids 407 (2015), pp. 98–105. doi: 10.1016/j.jnoncrysol.2014.10.025
  • W. Tu, S. Valenti, K.L. Ngai, S. Capaccioli, Y.D. Liu and L.M. Wang, Direct evidence of relaxation Anisotropy resolved by high pressure in a Rigid and Planar glass former. J. Phys. Chem. Lett 8 (2017), pp. 4341–4346. doi: 10.1021/acs.jpclett.7b01837
  • S. Kołodziej, S. Pawlus, K.L. Ngai and M. Paluch, Verifying the approximate Coinvariance of the α and Johari−goldstein β relaxation times to variations of pressure and temperature in Polyisoprene. Macromolecules 51 (2018), pp. 4435–4443. doi: 10.1021/acs.macromol.8b00811
  • S. Valenti, S. Capaccioli, and K.L. Ngai, Contrasting two different interpretations of the dynamics in binary glass forming mixtures. J. Chem. Phys 148 (2018), pp. 1–11. 054504. doi: 10.1063/1.5012088
  • K.L. Ngai and M. Paluch, Classification of secondary relaxation in glass-formers based on dynamic properties. J. Chem. Phys 120 (2004), pp. 857. doi: 10.1063/1.1630295
  • K.L. Ngai, Relaxation and Diffusion in Complex Systems, Springer, New York, NY, 2011.
  • K.L. Ngai, Relation between some secondary relaxations and the (-relaxations in glass-forming materials according to the coupling model. J. Chem. Phys 109 (1998), pp. 6982–6994. doi: 10.1063/1.477334
  • G.D. Smith and D. Bedrov, Relationship between the (- and (-relaxation processes in amorphous polymers: Insight from atomistic molecular dynamics simulations of 1,4-polybutadiene melts and blends. J. Polym. Sci. Part B: Polym. Phys 45 (2007), pp. 627–643. doi: 10.1002/polb.21064
  • C. Donati, S.C. Glotzer, P.H. Poole, W. Kob and S.J. Plimpton, Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys.Rev.E 60 (1999), pp. 3107–3119. doi: 10.1103/PhysRevE.60.3107
  • S. Karmakar, C. Dasgupta and S. Sastry, Short-Time Beta relaxation in glass-Forming liquids Is cooperative in nature. Phys. Rev. Lett 116 (2016), pp. 085701. doi: 10.1103/PhysRevLett.116.085701
  • I. Tah and S. Karmakar, Signature of Dynamical heterogeneity in Spatial Correlations of Particle displacement and its Temporal evolution in Supercooled liquids. Phys. Rev. Research (2020), in press.
  • B. Wang, B.S. Shang, X.Q. Gao, W.H. Wang, H.Y. Bai, M.X. Pan and P.F. Guan, Understanding Atomic-scale Features of Low temperature-relaxation dynamics in metallic glasses. J. Phys. Chem. Lett 7 (2016), pp. 4945–4950. doi: 10.1021/acs.jpclett.6b02466
  • B. Wang, L.J. Wang, W.H. Wang, H.Y. Bai, X.Q. Gao, M.X. Pan and P.F. Guan, Understanding the maximum dynamical heterogeneity during the unfreezing process in metallic glasses. J. Appl. Phys. 121 (2017), pp. 175106. doi: 10.1063/1.4982914
  • H.B. Yu, R. Richert, and K. Samwer, Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses. Sci. Adv. 3 (2017), pp. 1–7. 1701577.
  • H.-B. Yu, M.-H. Yang, Y. Sun, F. Zhang, J.-B. Liu, C.Z. Wang, K.M. Ho, R. Richert and K. Samwer, Fundamental Link between β relaxation, Excess Wings, and Cage-Breaking in metallic glasses. J. Phys. Chem. Lett 9 (2018), pp. 5877–5883. doi: 10.1021/acs.jpclett.8b02629
  • E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield and D.A. Weitz, Three-Dimensional direct Imaging of structural relaxation near the colloidal glass transition. Science 287 (2000), pp. 627–631. doi: 10.1126/science.287.5453.627
  • W. Schnauss, F. Fujara and H. Sillescu, The molecular dynamics around the glass transition and in the glassy state of molecular organic systems: A 2H−nuclear magnetic resonance study. J. Chem. Phys 97 (1992), pp. 1378–1389. doi: 10.1063/1.463264
  • R. Böhmer, G. Hinze, T. Jörg, F. Qi and H. Sillescu, Dynamical heterogeneity in α- and β-relaxations of glass forming liquids as seen by deuteron NMR. J. Phys.: Condens. Matter 12 (2000), pp. A383–A390.
  • R. Richert, Spectral selectivity in the slow (-relaxation of a molecular glass. Europhys. Lett 54 (2001), pp. 767–773. doi: 10.1209/epl/i2001-00320-5
  • T. Kanaya, R. Inoue, M. Saito, M. Seto and Y. Yoda, Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering. J. Chem. Phys 140 (2014), pp. 144906. doi: 10.1063/1.4869541
  • F. Caporaletti, S. Capaccioli, S. Valenti, M. Mikolasek, A. I. Chumakov, G. Monaco, (2019). A microscopic look at the Johari- Goldstein relaxation in a hydrogen bonded glass-former, Scientific Reports 9. 14319.
  • J. Gabriel, F. Pabst, A. Helbing, T. Böhmer and T. Blochowicz, Nature of the Debye-process in monohydroxy Alcohols: 5-methyl-2-hexanol Investigated by Depolarized Light scattering and dielectric spectroscopy. Phys. Rev. Lett 121 (2018), pp. 035501. doi: 10.1103/PhysRevLett.121.035501
  • O.E. Kalinovskaya and J.K. Vij, The exponential dielectric relaxation dynamics in a secondary alcohol’s supercooled liquid and glassy states. J. Chem. Phys 112 (2000), pp. 3262–3266. doi: 10.1063/1.480909
  • K.L. Ngai and L.-M. Wang, Relations between the structural α-relaxation and the Johari−goldstein β-relaxation in Two Monohydroxyl Alcohols: 1-propanol and 5-methyl-2-hexanol. J. Phys. Chem. B 123 (2019), pp. 714–719. doi: 10.1021/acs.jpcb.8b11453
  • E. Kamińska, A. Minecka, M. Tarnacka, K. Kamiński, and M. Paluch, Breakdown of the isochronal structural (() and secondary (JG β) superpositioning in probucol - a low molecular weight pharmaceutical. J. Mol. Liquids 299(2020) (in press), pp. 1–10. See Fig.5A in this paper.112169.
  • R. Casalini and C.M. Roland, Density Scaling of the structural and Johari−goldstein secondary relaxations in poly(methyl methacrylate). Macromolecules 46 (2013), pp. 6364–6368. See Fig.6 of this paper. doi: 10.1021/ma401210z
  • K.L. Ngai, An Extended Coupling model description of the evolution of dynamics with time in Supercooled liquids and Ionic Conductors. J. Phys.: Condens. Matter 15 (2003), pp. S1107–S1125.
  • K.L. Ngai and S. Capaccioli, On the relevance of the coupling model to experiments. J. Phys.: Condens. Matter 19 (2007), pp. 205114–203138.
  • K.L. Ngai and S. Capaccioli, Reconsidering the dynamics in Mixtures of methyltetrahydrofuran with tristyrene and Polystyrene. J. Phys. Chem. B 119 (2015), pp. 5677–5684. doi: 10.1021/acs.jpcb.5b00488
  • R. Casalini, K.L. Ngai, C.G. Robertson and C.M. Roland, (- and (-relaxations in Neat and Antiplasticized polybutadiene. J. Polym. Sci. Part B: Polym. Phys 38 (2000), pp. 1841–1847. doi: 10.1002/1099-0488(20000715)38:14<1841::AID-POLB20>3.0.CO;2-0
  • C.M. Roland, M.J. Schroeder, J.J. Fontanella and K.L. Ngai, Evolution of the dynamics in 1,4-Polyisoprene from a Nearly constant loss to a Johari-Goldstein (-relaxation to the (-relaxation. Macromolecules 37 (2004), pp. 2630–2635. doi: 10.1021/ma0358071
  • M. Romanini, M. Barrio, R. Macovez, M.D. Ruiz-Martin, S. Capaccioli and J.L.I. Tamarit, Thermodynamic Scaling of the dynamics of a strongly Hydrogen-Bonded glass-former. Sci. Rep 7 (2017), pp. 1346. doi: 10.1038/s41598-017-01464-2
  • K. Adrjanowicz, J. Pionteckc and M. Paluch, Isochronal superposition and density scaling of the intermolecular dynamics in glass-forming liquids with varying hydrogen bonding propensity. RSC Adv. 6 (2016), pp. 49370–49375. doi: 10.1039/C6RA08406K
  • S. Valenti, A. Diaz, M. Romanini, L.J. del Valle, J. Puiggalí, J.L. Tamarit and R. Macovez, Amorphous binary dispersions of chloramphenicol in enantiomeric pure and racemic poly-lactic acid: Morphology, molecular relaxations, and controlled drug release. Intern. J. Pharma 568 (2019), pp. 118565. doi: 10.1016/j.ijpharm.2019.118565
  • J. Knapik-Kowalczuk, Z. Wojnarowska, M. Rams-Baron, K. Jurkiewicz, J. Cielecka-Piontek, K.L. Ngai and M. Paluch, Atorvastatin as a Promising Crystallization Inhibitor of amorphous probucol: dielectric studies at ambient and elevated pressure. Mol. Pharm 14 (2017), pp. 267–2680. doi: 10.1021/acs.molpharmaceut.7b00152
  • M. Sahra, M. Shahin Thayyil, A.K. Bansal, K.L. Ngai, M.K. Sulaiman, G. Shete and K.P. Safna Hussan, Dielectric spectroscopic studies of three important active pharmaceutical ingredients - clofoctol, droperidol and probucol. J. Non-Cryst Solids 505 (2019), pp. 28–36. doi: 10.1016/j.jnoncrysol.2018.10.046
  • K.L. Ngai, S. Capaccioli, and M. Paluch, Relations of pressure and temperature dependences of the Johari-Goldstein β-relaxation to the α-relaxation: amorphous polymers. AIP Conf. Proc 1981 (2018), pp. 1–6. 020003.
  • G.P. Johari, Source of JG-relaxation in the entropy of glass. J. Phys. Chem. B 123 (2019), pp. 3010–3023. doi: 10.1021/acs.jpcb.9b00612

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.