151
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Dependence of NiTi hydride stability by co-substitution by (Zr,Mg) onto Ti and (Cr,Cu) onto Ni: first-principles study

, , ORCID Icon, & ORCID Icon
Pages 2458-2476 | Received 16 Dec 2019, Accepted 05 Jun 2020, Published online: 23 Jun 2020

References

  • N. Zhou and D. Ju, Study on preparation and properties evaluation of Mg/Ni/Ti hydrogen storage material. Int. J. Hydrog. Energy 39 (2014), pp. 19630–19636. doi: 10.1016/j.ijhydene.2014.09.131
  • J. Panek, A. Serek, A. Budniok, E. Rowinski and E. Lagiewka, Ni + Ti composite layers as cathode materials for electrolytic hydrogen evolution. Int. J. Hydrog. Energy 28 (2003), pp. 169–175. doi: 10.1016/S0360-3199(02)00055-1
  • A. Kellenberg, N. Vaszilcsin, W. Brandl and N. Duteanu, Kinetics of hydrogen evolution reaction on skeleton nickel and nickel–titanium electrodes obtained by thermal arc spraying technique. Int. J. Hydrog. Energy 32 (2007), pp. 3258–3265. doi: 10.1016/j.ijhydene.2007.02.028
  • E.W. Justi, H.H. Ewe, A.W. Kalberlah, N.M. Saridakis and M.H. Schaefer, Electrocatalysis in the nickel–titanium system. Energy. Convers 10 (1970), pp. 183–187. doi: 10.1016/0013-7480(70)90031-8
  • M. Gutjahr, H. Buchner, K. Beccu and H. Säufferer, A new type of reversible negative electrode for alkaline storage batteries based on metal alloy hydrides. J. Power Sources 4 (1973), pp. 79–91.
  • M. Makowiecka, E. Jankowska, I. Okonska and M. Jurczyk, Effect of Zr additions on the electrode characteristics of nanocrystalline TiNi-type hydrogen storage alloys. J. Alloys Compd 388 (2005), pp. 303–307. doi: 10.1016/j.jallcom.2004.07.026
  • E. Jankowska, M. Makowiecka and M. Jurczyk, Electrochemical performance of sealed Ni–MH batteries using nanocrystalline TiNi-type hydride electrodes. Renewable Energy 33 (2008), pp. 11–15. doi: 10.1016/j.renene.2007.05.026
  • J.L. Soubeyroux and D. Fruchart, Structural study of the hydrides NiTiHx (x=1.0 and 1.4). J. Alloys Compd 196 (1993), pp. 127–132. doi: 10.1016/0925-8388(93)90582-8
  • T. Nobuki, J.C. Crivello, F. Cuevas and J.M. Joubert, Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties. Int. J Hydrog. Energy 44 (2019), pp. 10770–10776. doi: 10.1016/j.ijhydene.2019.02.203
  • C. Zhou, Z. Fang, C. Ren, J. Li and J. Lu, Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. J. Phys. Chem. C 117(25) (2013), pp. 12973–12980. doi: 10.1021/jp402770p
  • B. Guiose, F. Cuevas, B. Décamps and A.P. Guégan, Solid–gas and electrochemical hydrogenation properties of pseudo-binary (Ti, Zr) Ni intermetallic compounds. Int. J. Hydrog. Energy 33 (2008), pp. 5795–5800. doi: 10.1016/j.ijhydene.2008.07.056
  • H. Emami and F. Cuevas, Hydrogenation properties of shape memory Ti(Ni,Pd) compounds. Intermetallics 19 (2011), pp. 876–886. doi: 10.1016/j.intermet.2011.02.002
  • M. Jurczyk, Handbook of Nanomaterials for Hydrogen Storage, Pan Stanford Publishing Pte. Ltd, Singapore, 2018.
  • J. Nei and K.H. Young, Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu) for Nickel metal hydride Battery applications. Batteries 2 (2016), pp. 24. doi: 10.3390/batteries2030024
  • F.C. Gennari and M.R. Esquivel, Structural characterization and hydrogen sorption properties of nanocrystalline Mg2Ni. J. Alloys. Compd 459(1–2) (2008), pp. 425–432. doi: 10.1016/j.jallcom.2007.04.283
  • M. Pozzo, D. Alfe, A. Amieiro, S. French and A. Pratt, Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg (0001) surfaces. J. Chem. Phys. 128 (2008), pp. 094703. doi: 10.1063/1.2835541
  • J. Zou, G. Hao, X. Zeng, S. Zhou, X. Chen and W. Ding, Hydrogen storage properties of Mg-TM-La(TM = Ti,Fe, Ni) ternary composite powders prepared through arc plasma method. Int. J. Hydrog. Energy 38 (2013), pp. 8852–8862. doi: 10.1016/j.ijhydene.2013.05.007
  • A. Revesz, M. Gajdics and T. Spassov, Microstructural evolution of ball-milled Mg-Ni powder during hydrogen sorption. Int. J. Hydrog. Energy 38 (2013), pp. 8342–8349. doi: 10.1016/j.ijhydene.2013.04.128
  • L. Ouyang, F. Liu, H. Wang, J. Liu, X.S. Yang, L. Sun and M. Zhu, Magnesium-based hydrogen storage compounds: A review. J. Alloys Compd 832 (2020), pp. 154865–154869. doi: 10.1016/j.jallcom.2020.154865
  • L.W. Huang, O. Elkedim, M. Nowak, R. Chassagnon and M. Jurczyk, Mg2–xTixNi (x [ 0, 0.5]) alloys prepared by mechanical alloying for electrochemical hydrogen storage: Experiments and first-principles calculations. Int. J. Hydrog. Energy 37 (2012), pp. 14248–14256. doi: 10.1016/j.ijhydene.2012.07.036
  • S. Rousselot, D. Guay and L. Roué, Comparative study on the structure and electrochemical hydriding properties of MgTi, Mg0.5Ni0.5Ti and MgTi0.5Ni0.5 alloys prepared by high energy ball milling. J. Power Sources 196 (2011), pp. 1561–1568. doi: 10.1016/j.jpowsour.2010.09.008
  • A. Szajek, M. Makowiecka, E. Jankowska and M. Jurczyk, Electrochemical and electronic properties of nanocrystalline TiNi1−xMx (M = Mg, Mn, Zr; x = 0, 0.125, 0.25) ternary alloys. J. Alloys Compd. 403 (2005), pp. 323–328. doi: 10.1016/j.jallcom.2005.05.011
  • X.D. Li, O. Elkedim, M. Nowak and M. Jurczyk, Characterization and first principle study of ball milled Ti-Ni with Mg doping as hydrogen storage alloy. Int. J. Hydrog. Energy 39 (2014), pp. 9735–9743. doi: 10.1016/j.ijhydene.2014.04.089
  • S. Wakao, H. Sawa, H. Nakano, S. Chubachi and M. Abe, Capacities and durabilities of Ti–Zr–Ni alloy hydride electrodes and effects of electroless plating on their performances. J. Less-Common Met 131 (1987), pp. 311–319. doi: 10.1016/0022-5088(87)90530-3
  • J. Bouet, B. Knosp, A. P. Guegan and C. Jordy, Matériau hydrurable pour électrode négative d’accumulateur Nickel–hydrure et son procédé de préparation, French patent (1992), pp. 9206732.
  • C. Jordy, M. Latroche, A.P. Guegan, J.C. Achard, J. Bouet and B. Knosp, Effect of partial substitution in TiNi on its structural and electrochemical hydrogen storage properties. Z. Phys. Chem 185 (1994), pp. 119–130. doi: 10.1524/zpch.1994.185.Part_1.119
  • F. Cuevas, M. Latroche, P. Ochin, A. Dezellus, J.F. Fernandez and C. Sanchez, Influence of the martensitic transformation on the hydrogenation properties of Ti50_xZrxNi50alloys. J. Alloys Compd 330-332 (2002), pp. 250–255. doi: 10.1016/S0925-8388(01)01636-X
  • H. Emami, F. Cuevas and M. Latroche, Ti(Ni,Cu) pseudobinary compounds as efficient negative electrodes for Ni–MH batteries. J. Power Sources 265 (2014), pp. 182–191. doi: 10.1016/j.jpowsour.2014.04.114
  • Z. Zhang, O. Elkedim, Y.Z. Ma, M. Balcerzak and M. Jurczyk, The phase transformation and electrochemical properties of TiNi alloys with Cu substitution: Experiments and first-principle calculations. Int. J. Hydrog. Energy 42 (2017), pp. 1444–1450. doi: 10.1016/j.ijhydene.2016.05.219
  • M. Jurczyka, E. Jankowskab, M. Nowaka and J. Jakubowicza, Nanocrystalline titanium-type metal hydride electrodes prepared by mechanical alloying. J. Alloys Compd 336(1–2) (2002), pp. 265–269. doi: 10.1016/S0925-8388(01)01875-8
  • B. Drenchev and T. Spassov, Electrochemical hydriding of amorphous andnanocrystallineTiNi-based alloys. J.Alloys and Compounds 441 (2007), pp. 197–201. doi: 10.1016/j.jallcom.2006.09.071
  • H. Emami, R. Souques, J.C. Crivello and F. Cuevas, Electronic and structural influence of Ni by Pd substitution on the hydrogenation properties of TiNi. J. Solid State Chemistry 198 (2013), pp. 475–484. doi: 10.1016/j.jssc.2012.11.010
  • R. Abbasi, S. Farshid and K. Bozorg, Electrochemical and kinetic performance of amorphous/nanostructured TiNi-based intermetallic compound with Nb substitution synthesized by mechanical alloying. J. Mat Res 33(22) (2018), pp. 3774–3784. doi: 10.1557/jmr.2018.231
  • B. Drenchev and T. Spassov, Influence of B substitution for Ti and Ni on the electrochemical hydriding of TiNi. J. Alloys Compd 474(1) (2009), pp. 527–530. doi: 10.1016/j.jallcom.2008.06.133
  • H. Emami and F. Cuevas, Cobalt induced multi-plateau behavior in TiNi-based Ni-MH electrodes. Energy Storage Mater 8 (2017), pp. 189–193. doi: 10.1016/j.ensm.2016.11.008
  • A. Baturin, A. Lotkov, V. Grishkov, I. Rodionov, Y. Kabdylkakov and V. Kudiiarov, The effect of hydrogen on martensite transformations and the state of hydrogen atoms in binary TiNi-based alloy with different grain sizes. Mater 12 (2019), pp. 3956–3967. doi: 10.3390/ma12233956
  • G. Liu, K. Yin, J. Zhang, H. Wang and H. Liu, A new intermediate phase in compressed nitinol. J. Alloys Compd 817 (2020), pp. 153234–153237. doi: 10.1016/j.jallcom.2019.153234
  • X. Gonze, F. Jollet, A. Araujo, M. Flavio, D. Adams and B. Amadon, Recent developments in the ABINIT software package. Comput. Phys. Commun 205 (2016), pp. 106–131. doi: 10.1016/j.cpc.2016.04.003
  • R.O. Jones and O. Gunnarson, The density functional formalism, its application and prospects. Rev. Mod. Phys 61 (1989), pp. 689. doi: 10.1103/RevModPhys.61.689
  • J.P. Perdew, K. Burker and M. Ernzerhof, Phys. Rev. Lett. 78 (1997), pp. 1396–1402. doi: 10.1103/PhysRevLett.78.1396
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • R.H. Byrd, P. Lu, J. Nocedal and C. Zhu, A limited memory algorithm for bound constrained optimization. SIAM. j. Sci. Comput 16 (1995), pp. 1190–1208. doi: 10.1137/0916069
  • X. Ke and I. Tanaka, Decomposition reactions for NaAlH4, Na3AlH6, and NaH: first-principles study. Phys. Rev. B 71 (2005), pp. 024117. doi: 10.1103/PhysRevB.71.024117
  • A. Klaveness, H. Fjellvag, A. Kjekshus, P. Ravindran and O. Swang, A semi-empirical approach to accurate standard enthalpies of formation for solid hydrides. J. Alloys Compd 469(1-2) (2009), pp. 617–622. doi: 10.1016/j.jallcom.2008.02.060
  • C.P. Broedersz, R. Gremaud, B. Dam and R. Griessen, Highly destabilized Mg-Ti-Ni-H system investigated by density functional theory and hydrogenography. Phys. Rev 77 (2008), pp. 02420401–02420410. doi: 10.1103/PhysRevB.77.024204
  • M. Bououdina, Y. Oumellal, L. Dupont, L. Aymard, H. Al-Gharni, A. Al-Hajry, T.A. Maark, A. De Sarkar, R. Ahuja, M.D. Deshpande, Z. Qian and A.B. Rahane, Lithium storage in amorphous TiNi hydride: electrode for rechargeable lithium-ion batteries. Mater. Chem. Phys 141 (2013), pp. 348–354. doi: 10.1016/j.matchemphys.2013.05.021
  • P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50 (1994), pp. 17953. doi: 10.1103/PhysRevB.50.17953
  • B. Guiose, Etude des composés intermétallique Ti1.02-x ZrxNi0.98 (0 ≤ x ≤ 0,48) pour accumulateur Nickel/Métal-hydrure, Ph. D. diss., Université Paris XII. 2007.
  • C.E. Lundin, F.E. Lynch and C.B. Magee, A correlation between the interstitial hole sizes in intermetallic compounds and the thermodynamic properties of the hydrides formed from those compounds. J. Less-Common Met 56(1) (1977), pp. 19–37. doi: 10.1016/0022-5088(77)90215-6
  • D.G. Westlake, Site occupancies and stoichiometries in hydrides of intermetallic compounds: geometric considerations. J. Less-Common Met 90 (1983), pp. 251–273. doi: 10.1016/0022-5088(83)90075-9
  • Z. Cao, L. Ouyang, H. Wang, J. Liu, L. Sun and M. Zhu, Composition design of Ti–Cr–Mn–Fe alloys for hybrid high-pressure metal hydride tanks. J. Alloy. Compd 639 (2015), pp. 452–457. doi: 10.1016/j.jallcom.2015.03.196
  • P. Liu, X. Xie, X. Li and T. Li, Hydrogen storage properties of (Ti0.85Zr0.15)1.05Mn1.2Cr0.6V0.1M0.1 (M = Ni, Fe, Cu) alloys easily activated at room temperature. Prog. Nat. Sci 27(6) (2017), pp. 652–657. doi: 10.1016/j.pnsc.2017.09.007
  • H. Pang, Z. Li, C. Zhou, H. Wang, L. Ouyang, S. Yuan, Y. Zhao and M. Zhu, Achieving the dehydriding reversibility and elevating the equilibrium pressure of YFe2 alloy by partial Y substitution with Zr. Int. J Hydrog. Energy 43(31) (2018), pp. 14541–14549. doi: 10.1016/j.ijhydene.2018.05.161
  • C. Kittel, Introduction to Solid State Physics, 8th ed, John Wiley and Sons, Inc, Hoboken, 2004, pp.71.
  • B. Rao and P. Jena, Switendick criterion for stable hydrides. Phys. Rev. B 31 (1985), pp. 6726. doi: 10.1103/PhysRevB.31.6726

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.