348
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The effects of chemical disorder and external loading conditions on the structural transformation between HCP and FCC phases in CrCoFeNi high-entropy alloys: a first-principles study

&
Pages 2857-2875 | Received 08 Jan 2020, Accepted 16 Jul 2020, Published online: 28 Jul 2020

References

  • Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61 (2014), pp. 1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • J. He, H. Wang, H. Huang, X. Xu, M. Chen, Y. Wu, X. Liu, T. Nieh, K. An, and Z. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102 (2016), pp. 187–196. doi: 10.1016/j.actamat.2015.08.076
  • Z. Wang, Y. Huang, J. Wang, and C.T. Liu, Design of high entropy alloys based on the experience from commercial superalloys. Phil. Mag. Lett. 95 (2015), pp. 1–6. doi: 10.1080/09500839.2014.987841
  • L.-F. Lin and C.-W. Tsai, Study on the damping behaviour of eutectic high-entropy alloys with lamellar structures. Phil. Mag. Lett. 99 (2019), pp. 226–234. doi: 10.1080/09500839.2019.1660819
  • Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, and C.T. Liu, The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Mater. 130 (2017), pp. 96–99. doi: 10.1016/j.scriptamat.2016.11.014
  • J. Su, X. Wu, D. Raabe, and Z. Li, Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy. Acta Mater. 167 (2019), pp. 23–39. doi: 10.1016/j.actamat.2019.01.030
  • W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, and Z. Li, Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys. Adv. Mater. 30 (2018), pp. 1804727. doi: 10.1002/adma.201804727
  • Q. Lin, J. Liu, X. An, H. Wang, Y. Zhang, and X. Liao, Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Mater. Res. Lett. 6 (2018), pp. 236–243. doi: 10.1080/21663831.2018.1434250
  • C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, and M. Ghazisaeidi, Magnetically-driven phase transformation strengthening in high entropy alloys. Nature Commun. 9 (2018), pp. 1363–1368. doi: 10.1038/s41467-018-03846-0
  • F. Zhang, S. Zhao, K. Jin, H. Bei, D. Popov, C. Park, J.C. Neuefeind, W.J. Weber, and Y. Zhang, Pressure-induced FCC to HCP phase transition in Ni-based high entropy solid solution alloys. Appl. Phys. Lett. 110 (2017), pp. 011902. doi: 10.1063/1.4973627
  • E.-W. Huang, C.-M. Lin, J. Jain, S.R. Shieh, C.-P. Wang, Y.-C. Chuang, Y.-F. Liao, D.-Z. Zhang, T. Huang, and T.-N. Lam, Irreversible phase transformation in a CoCrFeMnNi high entropy alloy under hydrostatic compression. Mater. Today Commun. 14 (2018), pp. 10–14. doi: 10.1016/j.mtcomm.2017.12.001
  • S. Basu, Z. Li, K.G. Pradeep, and D. Raabe, Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy, strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy. Front. Mater. Struct. Mater. 5 (2018), pp. 1–10.
  • J.M. MacLaren, A. Gonis, and G. Schadler, First-principles calculation of stacking-fault energies in substitutionally disordered alloys. Phys. Rev. B. 45 (1992), pp. 14392–14395. doi: 10.1103/PhysRevB.45.14392
  • D.J. Siegel, Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Appl. Phys. Lett. 87 (2005), pp. 121901–121903. doi: 10.1063/1.2051793
  • A. Zaddach, C. Niu, C. Koch, and D. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65 (2013), pp. 1780–1789. doi: 10.1007/s11837-013-0771-4
  • N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M. Chen, H. Matsunoshita, K. Tanaka, H. Inui, and E.P. George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6 (2016), pp. 35863. doi: 10.1038/srep35863
  • M. Mizuno, K. Sugita, and H. Araki, Defect energetics for diffusion in CrMnFeCoNi high-entropy alloy from first-principles calculations. Comp. Mater. Sci. 170 (2019), pp. 109163. doi: 10.1016/j.commatsci.2019.109163
  • S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström and L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Mater. 108 (2015), pp. 44–47. doi: 10.1016/j.scriptamat.2015.05.041
  • G. Zheng, Molecular dynamics and first-principles studies on the deformation mechanisms of nanostructured cobalt. J. Alloys Compd. 504 (2010), pp. S467–S471. doi: 10.1016/j.jallcom.2010.02.144
  • J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comp. Chem. 29 (2008), pp. 2044–2078. doi: 10.1002/jcc.21057
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54 (1996), pp. 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865. doi: 10.1103/PhysRevLett.77.3865
  • P. Wisesa, K.A. McGill, and T. Mueller, Efficient generation of generalized Monkhorst-pack grids through the use of informatics. Phys. Rev. B. 93 (2016), pp. 155109. doi: 10.1103/PhysRevB.93.155109
  • S. Shang, Y. Wang, Y. Du, M.A. Tschopp and Z.-K. Liu, Integrating computational modeling and first-principles calculations to predict stacking fault energy of dilute multicomponent Ni-base alloys. Comp. Mater. Sci. 91 (2014), pp. 50–55. doi: 10.1016/j.commatsci.2014.04.040
  • D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 100 (2015), pp. 90–97. doi: 10.1016/j.actamat.2015.08.050
  • A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, and Z.K. Liu, Efficient stochastic generation of special quasirandom structures. Calphad 42 (2013), pp. 13–18. doi: 10.1016/j.calphad.2013.06.006
  • A. van de Walle, Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit. Calphad 33 (2009), pp. 266–278. doi: 10.1016/j.calphad.2008.12.005
  • W.Y. Wang, S.L. Shang, Y. Wang, Z.-G. Mei, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, X.D. Hui, and Z.-K. Liu, Effects of alloying elements on stacking fault energies and electronic structures of binary Mg alloys: a first-principles study. Mater. Res. Lett. 2 (2014), pp. 29–36. doi: 10.1080/21663831.2013.858085
  • L. Qi, Effects of electronic structures on mechanical properties of transition metals and alloys. Comp. Mater. Sci. 163 (2019), pp. 11–16. doi: 10.1016/j.commatsci.2019.01.049
  • D. Long, M. Li, D. Meng, and Y. He, Electronic-structure and thermodynamic properties of ZnS1− xSex ternary alloys from the first-principles calculations. Comp. Mater. Sci. 149 (2018), pp. 386–396. doi: 10.1016/j.commatsci.2018.03.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.