196
Views
2
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Elastic anisotropy, electronic and magnetic behaviours of ferromagnetic Europium Niobate EuNbO3 in orthorhombic structure: DFT + U, MFA and QTAIM studies

, ORCID Icon, , , , , & show all
Pages 2889-2911 | Received 15 Feb 2020, Accepted 15 Jul 2020, Published online: 30 Jul 2020

References

  • A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, and T. Wu, Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 118(49) (2014), pp. 28494–28501. doi: 10.1021/jp509753p
  • B. Sahli, H. Bouafia, B. Abidri, A. Bouaza, A. Akriche, S. Hiadsi, and A. Abdellaoui, Study of hydrostatic pressure effect on structural, mechanical, electronic and optical properties of KMgF3, K0.5Na0.5MgF3 and NaMgF3 cubic fluoro-perovskites via ab initio calculations. Int. J. Mod. Phys. B 30 (2016), p. 1650230. doi: 10.1142/S0217979216502301
  • B. Boughoufala, H. Bouafia, B. Sahli, B. Djebour, S. Mokrane, S. Hiadsi, and B. Abidri, DFT + U and QTAIM studies of elastic, magnetic, bonding, and optoelectronic behaviors of RbUO3. J. Supercond. Nov. Magn. 32 (2019), pp. 4005–4020. doi: 10.1007/s10948-019-05177-7
  • J. Cibert, J.-F. Bobo, and U. Lüders, Development of new materials for spintronics-développement de nouveaux matériaux pour la spintronique. C. R. Physique 6 (2005), pp. 977–996. doi: 10.1016/j.crhy.2005.10.008
  • B. He, R. Wang, H. Lu, Y. Ji, Q. Song, X. Tang, Y. Jina, F. Wu, and L. Zhu, Alkyl chain engineering on tetraphenylethylene-diketopyrrolopyrrole-based interfacial materials for efficient inverted perovskite solar cells. Org. Electron. 69 (2019), pp. 13–19. doi: 10.1016/j.orgel.2019.03.002
  • S. Mokrane, H. Bouafia, B. Sahli, B. Abidri, B. Djebour, S. Hiadsi, and D. Rached, Pressure effect on mechanical, magnetic and optoelectronic properties of SrCoO3-perovskite: FP-(L)APW + lo investigation. Chin. J. Phys. 59 (2019), pp. 625–640. doi: 10.1016/j.cjph.2019.04.018
  • B. Sana, H. Bouafia, M. Hassan, A. Bouaza, B. Sahli, B. Djebour, S. Hiadsi, and B. Abidri, Study of magnetic and optoelectronic properties of BaCmO3-cubic perovskite after the estimation of Hubbard interaction and Hund’s exchange parameters: GW and DFT + U investigations. Optik. (Stuttg) 168 (2018), pp. 196–207. doi: 10.1016/j.ijleo.2018.04.064
  • G. Chahi, D. Bradai, and I. Belabbas, Structural and elastic properties of CaCO3 hydrated phases: A dispersion-corrected density functional theory study. J. Phys. Chem. Solids 138 (2020), p. 109295. doi: 10.1016/j.jpcs.2019.109295
  • J.A. Flores-Livas, Crystal structure prediction of magnetic materials. J. Phys.: Condens. Matter 32 (2020), p. 294002.
  • T. Yang, Z. Cheng, G. Surucu, and X. Wang, Coexistence of parabolic and linear band crossings and electron-doped spin-gapless properties in rhombohedral type YbBO3. J. Alloys Compd. 823 (2020), p. 153835. doi: 10.1016/j.jallcom.2020.153835
  • A. Erkisi, G. Surucu, and E. Deligoz, The structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni). Int. J. Mod. Phys. B 32 (2018), p. 1850057. doi: 10.1142/S0217979218500571
  • A. Erkişi, G. Gökoğlu, G. Sürücü, R. Ellialtıoğlu, and E. Kamil Yıldırım, First-principles investigation of LaGaO3 and LaInO3 lanthanum perovskite oxides. Philos. Mag. 96 (2016), pp. 2040–2058. doi: 10.1080/14786435.2016.1189100
  • A. Gencer and G. Surucu, Properties of BaYO3 perovskite and hydrogen storage properties of BaYO3Hx. Int. J. Hydrogen Energy 45 (2020), pp. 10507–10515. doi: 10.1016/j.ijhydene.2019.06.198
  • C. Kaderoglu, G. Surucu, and A. Erkisi, The investigation of electronic, elastic and vibrational properties of an interlanthanide perovskite: PrYbO3. J. Electron. Mater. 46 (2017), pp. 5827–5836. doi: 10.1007/s11664-017-5600-z
  • A. Dorbane, H. Bouafia, B. Sahli, B. Djebour, A. Bouaza, S. Hiadsi, and B. Abidri, Magnetic ground state and pressure effect study on elasticity, electronic and magnetic properties of KUO3: DFT + U, GLLB-SC, mBJ and QTAIM investigations. Solid State Sci. 90 (2019), pp. 56–67. doi: 10.1016/j.solidstatesciences.2019.02.001
  • A.P. Sakhya, A. Dutta, S. Shannigrahi, and T.P. Sinha, Electronic structure, optical dielectric constant and born effective charge of EuAlO3. J. Phys. Chem. Solids 88 (2016), pp. 1–7. doi: 10.1016/j.jpcs.2015.09.004
  • I. Phebe Kokila, M. Kanagaraj, P. Sathish Kumar, S.C. Peter, C. Sekar, and H.A. Therese, Structural, magnetic and magnetocaloric properties of EuMnO3 perovskite manganite: A comprehensive MCE study. Mater. Res. Express 5 (2018), p. 026107. doi: 10.1088/2053-1591/aaacdc
  • Y. Kususe, S. Yoshida, K. Fujita, H. Akamatsu, M. Fukuzumi, S. Murai, and K. Tanaka, Structural phase transitions in EuNbO3 perovskite. J. Solid-State Chem. 239 (2016), pp. 192–199. doi: 10.1016/j.jssc.2016.04.032
  • A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comp. Mater. Sci. 28 (2003), pp. 155–168. Code available at http://www.xcrysden.org/. doi: 10.1016/S0927-0256(03)00104-6
  • S. Xu, Y. Gu, X. Zhang, and X. Wu, First-principle investigation on electronic structures and magnetic properties of EuNbO3 phases. Eur. Phys. J. Appl. Phys. 85 (2019), p. 10601. doi: 10.1051/epjap/2018180100
  • S.S. Paliwal, V. Maurya, and K.B. Joshi, First-principles study of electronic structure and fermiology of covellite mineral and its B1, B3 phases. J. Phys.: Condens. Matter 32 (2020), p. 295501.
  • G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64 (2001), p. 195134. doi: 10.1103/PhysRevB.64.195134
  • K. Schwarz, P. Blaha, and G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147 (2002), pp. 71–76. doi: 10.1016/S0010-4655(02)00206-0
  • P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and L. D. Marks, WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, 2018. ISBN 3-9501031-1-2.
  • P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, and L.D. Marks, WIEN2k: an APW + lo program for calculating the properties of solids. J. Chem. Phys. 152 (2020), p. 074101. doi: 10.1063/1.5143061
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), p. 5188. doi: 10.1103/PhysRevB.13.5188
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), p. 3865. doi: 10.1103/PhysRevLett.77.3865
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in Solids and surfaces. Phys. Rev. Lett. 100 (2008), p. 136406. doi: 10.1103/PhysRevLett.100.136406
  • R.F.W. Bader, Atoms in Molecules, Oxford University Press, Oxford, 1990.
  • R.F.W. Bader, T.T. Nguyen-Dang, and Y. Tal, A topological theory of molecular structure. Rep. Prog. Phys. 44 (1981), p. 893. doi: 10.1088/0034-4885/44/8/002
  • A. Otero-de-la-Roza, E.R. Johnson, and V. Luaña, Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun. 185 (2014), pp. 1007–1018. doi: 10.1016/j.cpc.2013.10.026
  • A. Otero-de-la-Roza, M.A. Blanco, A. Martín Pendás, and V. Luaña, Critic: A new program for the topological analysis of solid-state electron densities. Comput. Phys. Commun. 180 (2009), pp. 157–166. doi: 10.1016/j.cpc.2008.07.018
  • H. E. Stanley, Mean Field Theory of Magnetic Phase Transitions: Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, 1971.
  • P.W. Anderson, Theory of magnetic exchange interactions: Exchange in insulators and semiconductors. Solid State Phys. 14 (1963), pp. 99–214. doi: 10.1016/S0081-1947(08)60260-X
  • The Munich SPR-KKR package, version 7.7, H. Ebert et al. Available at http://ebert.cup.uni-muenchen.de/SPRKKR.
  • H. Ebert, D. Ködderitzsch, and J. Minár, Calculating condensed matter properties using the KKR-Green’s function method—Recent developments and applications. Rep. Prog. Phys. 74 (2011), p. 096501. doi: 10.1088/0034-4885/74/9/096501
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Prot. Natl. Acad. Sci. USA 30 (1944), p. 244. doi: 10.1073/pnas.30.9.244
  • M. Jamal, M. Bilal, I. Ahmad, and S. Jalali-Asadabadi, IRelast package. J. Alloys Compd. 735 (2018), pp. 569–579. doi: 10.1016/j.jallcom.2017.10.139
  • A.H. Reshak and M. Jamal, DFT calculation for elastic constants of orthorhombic structure within WIEN2 K code: A new package (ortho-elastic). J. Alloys Compd. 543 (2012), pp. 147–151. doi: 10.1016/j.jallcom.2012.07.107
  • F. Mouhat and F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90 (2014), p. 224104. doi: 10.1103/PhysRevB.90.224104
  • W. Voigt, Lehrbuch der Kristallphysik, Teubner, Stuttgart, 1928.
  • A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech 9 (1929), pp. 49–58. doi: 10.1002/zamm.19290090104
  • R. Hill, The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London A 65 (1952), p. 349. doi: 10.1088/0370-1298/65/5/307
  • C. Chen, L. Liu, Y. Wen, Y. Jiang, and L. Chen, Elastic properties of orthorhombic YBa2Cu3O7 under pressure. Crystals. (Basel) 9 (2019), p. 497. doi: 10.3390/cryst9100497
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101 (2008), p. 055504. doi: 10.1103/PhysRevLett.101.055504
  • J.F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 1985.
  • V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J. Phys.: Condens. Matter 9 (1997), pp. 767–808.
  • V.I. Anisimov, J. Zaanen, and O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44 (1991), p. 943. doi: 10.1103/PhysRevB.44.943
  • G.K.H. Madsen and P. Novák, Charge order in magnetite. An LDA + U study. Europhys. Lett. 69 (2005), pp. 777–783. doi: 10.1209/epl/i2004-10416-x
  • V.I. Anisimov and O. Gunnarsson, Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43 (1991), p. 7570. doi: 10.1103/PhysRevB.43.7570
  • C. Spiel, P. Blaha, and K. Schwarz, Density functional calculations on the charge-ordered and valence-mixed modification of YBaFe2O5. Phys. Rev. B 79 (2009), p. 115123. doi: 10.1103/PhysRevB.79.115123
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102 (2009), p. 226401. doi: 10.1103/PhysRevLett.102.226401
  • R.A. Jishi, O.B. Ta, and A.A. Sharif, Modeling of lead Halide perovskites for photovoltaic applications. J. Phys. Chem. C 118 (2014), pp. 28344–28349. doi: 10.1021/jp5050145
  • G.K. Strukova, D.V. Shovkun, V.N. Zverev, I.E. Batov, S.A. Zver’kov, and S.S. Khasanov, On the superconducting and magnetic properties of HoNbO3−δ and EuNbO3−δ complex oxides. Phys. C: Supercond. 351 (2001), pp. 363–370. doi: 10.1016/S0921-4534(00)01643-9
  • V.G. Zubkov, A.P. Tyutyunnik, V.A. Pereliaev, G.P. Shveikin, J. Köhler, R.K. Kremer, A. Simon, and G. Svensson, Synthesis and structural, magnetic and electrical characterisation of the reduced oxoniobates BaNb8O14, EuNb8O14, Eu2Nb5O9 and EuxNbO3 (x = 0.7, 1.0). J. Alloys Compd. 226 (1995), pp. 24–30. doi: 10.1016/0925-8388(95)01597-3
  • A.D. Becke and K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92 (1990), p. 5397. doi: 10.1063/1.458517
  • B. Silvi and A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371 (1994), pp. 683–686. doi: 10.1038/371683a0
  • V. Maurya and K.B. Joshi, Electron localization function and Compton profiles of Cu2O. J. Phys. Chem. A 123(10) (2019), pp. 1999–2007. doi: 10.1021/acs.jpca.8b12102
  • J. Contreras-Garcia, E. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. Beratan, and W. Yang, NCIPLOT: A program for plotting non-covalent interaction regions. J. Chem. Theor. Comp. 7 (2011), p. 625. doi: 10.1021/ct100641a
  • E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, and W. Yang, Revealing noncovalent interactions. J. Am. Chem. Soc. 132 (2010), p. 6498. doi: 10.1021/ja100936w
  • A. Otero-de-la-Roza, J. Contreras-Garcia, and E.R. Johnson, Revealing non-covalent interactions in solids: NCI plots revisited. Phys. Chem. Chem. Phys. 14 (2012), p. 12165. doi: 10.1039/c2cp41395g
  • P. Mori-Sánchez, A. Martín Pendás, and V. Luaña, A classification of covalent, ionic, and metallic solids based on the electron density. J. Am. Chem. Soc. 124 (2002), p. 14721. doi: 10.1021/ja027708t
  • C. Felser, J. Köhler, A. Simon, O. Jepsen, G. Svensson, S. Cramm, and W. Eberhardt, Metal valence states in Eu0.7NbO3, EuNbO3, and Eu2Nb5O9 by TB-LMTO-ASA band-structure calculations and resonant photoemission spectroscopy. Phys. Rev. B 57 (1998), p. 1510. doi: 10.1103/PhysRevB.57.1510

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.