90
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Structural heritage of metallic glasses and relevant crystals understood via the principal cluster

, &
Pages 2938-2948 | Received 21 May 2020, Accepted 07 Jul 2020, Published online: 26 Aug 2020

References

  • P. Gaskell, A new structural model for transition metal-metalloid glasses. Nature 276 (1978), pp. 484–485. doi: 10.1038/276484a0
  • E. Ma, Tuning order in disorder. Nat. Mater. 14 (2015), pp. 547–552. doi: 10.1038/nmat4300
  • D.B. Miracle, A structural model for metallic glasses. Nat. Mater. 3 (2004), pp. 697–720. doi: 10.1038/nmat1219
  • J.D. Bernal and J. Mason, Packing of spheres: coordination of randomly packed spheres. Nature 188 (1960), pp. 910–911. doi: 10.1038/188910a0
  • D.B. Miracle and O.N. Senkov, Topological criterion for metallic glass formation. Mater. Sci. Eng. A 347 (2003), pp. 50–58. doi: 10.1016/S0921-5093(02)00579-8
  • C. Li, J. Saida and A. Inoue, Relationship between the precipitation of face-centered cubic Zr2Ni phase and the stability of supercooled liquid state in Zr-Cu-Ni-Al metallic glasses. Mater. Trans. JIM. 41 (2000), pp. 1521–1525. doi: 10.2320/matertrans1989.41.1521
  • U. Koster, D. Zander and J. Rainer, Quasicrystal formation, phase selection and crystallization kinetics in Zr-Cu-Ni-Al based metallic glasses. Mater. Sci. Forum. 386 (2002), pp. 89–98. doi: 10.4028/www.scientific.net/MSF.386-388.89
  • A. Filipponi, A.D. Cicco and S.D. Panfilis, Structure of undercooled liquid Pd probed by X-ray absorption spectroscopy. Phys. Rev. Lett. 83 (1999), pp. 560–563. doi: 10.1103/PhysRevLett.83.560
  • T. Schenk, V. Simonet, D. Holland-Moritz, R. Bellissent, T. Hansen, P. Convert and D.M. Herlach, Temperature dependence of the chemical and topological short-range order in undercooled and stable Al-Fe-Co liquids. Euro. Phys. Lett. 65 (2004), pp. 34–40. doi: 10.1209/epl/i2003-10062-x
  • J.D. Bernal, A geometrical approach to the structure of liquids. Nature. 203 (1964), pp. 964–968.
  • C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y.H. Li, J. Wu and J.H. Xia, From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses. Appl. Phys. 40 (2007), pp. 273–291.
  • J.X. Chen, Q. Wang, Y.M. Wang, J.B. Qiang and C. Dong, Cluster formulae for alloy phases. Phil. Mag. Lett. 90 (2010), pp. 683–688. doi: 10.1080/09500839.2010.495356
  • G. Han, J.B. Qiang, F.W. Li, L. Yuan, S.G. Quan, Q. Wang, Y.M. Wang and C. Dong, The e/a values of ideal metallic glasses in relation to cluster formulae. Acta Mater. 59 (2011), pp. 5917–5923. doi: 10.1016/j.actamat.2011.05.065
  • S. Zhang, D.D. Dong, Z.J. Wang, C. Dong and P. Häussler, Composition formulas of Ni-(Nb, Ta) bulk metallic glasses. Intermetallics 85 (2017), pp. 176–179. doi: 10.1016/j.intermet.2017.02.019
  • J.X. Chen, C. Dong and Q. Wang, Alloy phases and metallic glass formation understood via cluster formulas. Chem. Phys. Lett. 502 (2011), pp. 176–179. doi: 10.1016/j.cplett.2010.12.039
  • Y. Ma and E.A. Stern, Short-range structure of Al-Mn and Al-Mn-Si aperiodic alloys. Phys. Rev. B. 38 (1988), pp. 3754–3765. doi: 10.1103/PhysRevB.38.3754
  • D. Turnbull, Under what conditions can a glass be formed? Contemp. Phys. 10 (1969), pp. 473–488. doi: 10.1080/00107516908204405
  • J.X. Chen, Q. Wang, Y.M. Wang, J.B. Qiang, F.W. Li, C.L. Zhu and C. Dong, Cluster formulas for metallic glasses derived from devitrification phases. Phil. Mag. 92 (2012), pp. 4300–4319. doi: 10.1080/14786435.2012.705041
  • O.N. Senkov, D.B. Miracle and J.M. Scott, Development and characterization of Ca-Mg-Zn-Cu bulk metallic glasses. Intermetallics 14 (2006), pp. 1055–1060. doi: 10.1016/j.intermet.2006.01.024
  • P.J. Steinhardt, How does your quasicrystal grow? Nature 452 (2008), pp. 43–44. doi: 10.1038/452043a
  • B. Jatin, J. Wu, J.H. Xia, Q. Wang, C. Dong and B.S. Murty, Optimization of bulk metallic glass forming compositions in Zr-Cu-Al system by thermodynamic modeling. Intermetallics 15 (2007), pp. 716–721. doi: 10.1016/j.intermet.2006.10.018
  • D.B. Miracle, The efficient cluster packing model-An atomic structural model for metallic glasses. Acta. Mater. 54 (2006), pp. 4317–4336. doi: 10.1016/j.actamat.2006.06.002
  • J.X. Chen, J.B. Qiang, Q. Wang and C. Dong, Defining nearest neighbor clusters in alloy phases using radial distribution of atomic density. Acta Phys. Sin. 61 (2012), pp. 046102.
  • P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. Desk EditionASM International, Ohio, 1997Vol. 1.
  • F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion and structure, in Cohesion in Metals: Transition Metal AlloysVol. 1de Boer F. R., Pettifor D. G., eds., Amsterdam, North-Holland, 1988.
  • A.L. Greer, Metallic glasses. Science 267 (1995), pp. 1947–1953. doi: 10.1126/science.267.5206.1947
  • A. Inoue and A. Takeuchi, Recent progress in bulk glassy alloys. Mater. Trans. JIM. 43 (2002), pp. 1892–1906. doi: 10.2320/matertrans.43.1892
  • Y. Li, Q. Guo, J. Kalb and C. Thompson, Matching glass-forming ability with the density of the amorphous phase. Science 322 (2008), pp. 1816–1819. doi: 10.1126/science.1163062
  • O.J. Kwon, Y. Kim, K. Kim, Y. Lee and E. Fleury, Formation of amorphous phase in the binary Cu-Zr alloy system. Met. Mater. Int. 12 (2006), pp. 207–212. doi: 10.1007/BF03027532
  • J.L. Du, B. Wen, R. Melnik and Y. Kawazoe, Determining characteristic principal clusters in the “cluster-plus-glue-atom” model. Acta Mater. 75 (2014), pp. 113–121. doi: 10.1016/j.actamat.2014.04.052
  • D.D. Dong, S. Zhang, Z.J. Wang, C. Dong and P. Häussler, Composition interpretation of binary bulk metallic glasses via principal cluster definition. Mater. Des. 96 (2016), pp. 115–121. doi: 10.1016/j.matdes.2016.02.020
  • J.X. Chen and J. Geng, Mg67zn28ca5 bulk metallic glass formation understood via closed-packed icosahedra Zn2Mg11 eutectic cluster. Intermetallics 61 (2015), pp. 27–29. doi: 10.1016/j.intermet.2015.02.012
  • P. Ramachandrarao, On glass-formation in metal-metal systems. Z. Metallkd. 71 (1980), pp. 172–177.
  • J. Saida, T. Sanada, S. Sato, M. Imafuku, C. Li and A. Inoue, Nano quasicrystal formation and local atomic structure in Zr-Pd and Zr-Pt binary metallic glasses. Z. Kristallogr. 223 (2008), pp. 726–730. doi: 10.1524/zkri.2008.1041
  • J. Saida, Local structure characterization in quasicrystal-forming Zr80Pt20 binary amorphous alloy. Appl. Phys. Lett. 91 (2007), pp. 111901. doi: 10.1063/1.2778750
  • T. Takagi, T. Ohkubo, Y. Hirotsu, B.S. Murty, K. Hono and D. Shindo, Local structure of amorphous Zr70Pd30 alloy studied by electron diffraction. Appl. Phys. Lett. 79 (2001), pp. 485–487. doi: 10.1063/1.1383055
  • K.F. Yao and F. yuan, Pd-Si binary bulk metallic glass prepared at low cooling rate. Chin. Phys. Lett. 22 (2005), pp. 1481–1483. doi: 10.1088/0256-307X/22/6/051
  • K.F. Yao and N. Chen, Pd-Si binary bulk metallic glass. Sci. China Ser. G-Phys. Mech. Astron. 51 (2008), pp. 414–420. doi: 10.1007/s11433-008-0051-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.