460
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On the mechanical response and intermetallic compound formation in Al/Fe interface: molecular dynamics analyses

, , & ORCID Icon
Pages 3041-3060 | Received 11 Sep 2019, Accepted 27 Jul 2020, Published online: 16 Aug 2020

References

  • A. Hassani, A. Makan, K. Sbiaai, A. Tabyaoui and A. Hasnaoui, Molecular dynamics study of growth and interface structure during aluminum deposition on Ni(1 0 0) substrate. Appl. Surf. Sci 349 (2015), pp. 785–791. doi: 10.1016/j.apsusc.2015.05.076
  • B. Wu, J. Zhou, C. Xue and H. Liu, Molecular dynamics simulation of the deposition and annealing of NiAl film on Ni substrate. Appl. Surf. Sci 355 (2015), pp. 1145–1152. doi: 10.1016/j.apsusc.2015.07.208
  • S.P. Kiselev and E.V. Zhirov, Molecular-dynamics simulation of the synthesis of intermetallic Ti-Al. Intermetallics 49 (2014), pp. 106–114. doi: 10.1016/j.intermet.2014.01.008
  • C.Y. Chung and Y.C. Chung, Molecular dynamics simulation of nano-scale Fe-Al thin film growth. Mater. Lett 60 (2006), pp. 1063–1067. doi: 10.1016/j.matlet.2005.10.088
  • P. Süle, D. Kaptás, L. Bujdosó, Z.E. Horváth, A. Nakanishi and J. Balogh, Chemical mixing at “Al on Fe” and “Fe on Al” interfaces. J. Appl. Phys 118 (2015. doi: 10.1063/1.4932521
  • E. Fonda and A. Traverse, Evidence of intermixing at the Fe/Al interface in multilayers produced by metal vapor deposition at room temperature. J. Magn. Magn. Mater 268 (2004), pp. 292–297. doi: 10.1016/S0304-8853(03)00537-7
  • H. Hao and D. Lau, Atomistic modeling of metallic thin films by modified embedded atom method. Appl. Surf. Sci 422 (2017), pp. 1139–1146. doi: 10.1016/j.apsusc.2017.05.011
  • S. Shao, H.M. Zbib, I.N. Mastorakos and D.F. Bahr, Deformation mechanisms, size effects, and strain hardening in nanoscale metallic multilayers under nanoindentation. J. Appl. Phys 112 (2012. doi: 10.1063/1.4752869
  • S.D. Chen, Y.K. Zhou and A.K. Soh, Molecular dynamics simulations of mechanical properties for Cu(0 0 1)/Ni(0 0 1) twist boundaries. Comput. Mater. Sci 61 (2012), pp. 239–242. doi: 10.1016/j.commatsci.2012.04.035
  • X.W. Zhou, J.A. Zimmerman, E.D. Reedy and N.R. Moody, Molecular dynamics simulation based cohesive surface representation of mixed mode fracture. Mech. Mater 40 (2008), pp. 832–845. doi: 10.1016/j.mechmat.2008.05.001
  • R.G. Hoagland, J.P. Hirth and A. Misra, On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag 86 (2006), pp. 3537–3558. doi: 10.1080/14786430600669790
  • N. Abdolrahim, H.M. Zbib and D.F. Bahr, Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast 52 (2014), pp. 33–50. doi: 10.1016/j.ijplas.2013.04.002
  • J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein and A. Misra, Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int. J. Plast 53 (2014), pp. 40–55. doi: 10.1016/j.ijplas.2013.07.002
  • Y. Chen, S. Shao, X.Y. Liu, S.K. Yadav, N. Li, N. Mara and J. Wang, Misfit dislocation patterns of Mg-Nb interfaces. Acta Mater. 126 (2017), pp. 552–563. doi: 10.1016/j.actamat.2016.12.041
  • V. Vítek, Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag 18 (1968), pp. 773–786. doi: 10.1080/14786436808227500
  • V. Vitek, Theory of the core structures of the dislocations in body-centered-cubic metals. Cryst. Lattice Defects 5 (1974), pp. 1–34.
  • M.H. Enayati and M. Salehi, Formation mechanism of Fe3Al and FeAl intermetallic compounds during mechanical alloying. J. Mater. Sci 40 (2005), pp. 3933–3938. doi: 10.1007/s10853-005-0718-4
  • G. Temizel and M. Özenbaş, Intermetallic phase formation at Fe-Al film interfaces. Turkish J. Eng. Environ. Sci 31 (2007), pp. 71–78.
  • M. Dehghani, A. Amadeh and S.A.A. Akbari Mousavi, Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Mater. Des 49 (2013), pp. 433–441. doi: 10.1016/j.matdes.2013.01.013
  • K. Kimapong, T. Watanabe, Friction Stir Welding of Aluminum Alloy to Steel, Weld, J. 83 (Miami, FL). (2004), pp. 277–282.
  • S. Plimpton, A. Thompson, S. Moore, A. Kohlmeyer, R. Berger, LAMMPS Molecular Dynamics Simulator, (2001). https://lammps.sandia.gov/index.html
  • R. Kohlhaas, P. Dunner and N. Schmitz-Pranghe, Uber die temperaturabhangigkeit der gitterparameter von eisen, kobalt und nickel im bereich hoher temperaturen. Zeitschrift Fur Angew. Phys 23 (1967), pp. 245–249.
  • W. Witt, Absolute Präzisionsbestimmung von Gitterkonstanten an Germanium- und aluminium-Einkristallen mit Elektroneninterferenzen. Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci 22 (1967), pp. 92–95. doi: 10.1515/zna-1967-0115
  • I.N. Mastorakos, A. Bellou, D.F. Bahr and H.M. Zbib, Size-dependent strength in nanolaminate metallic systems. J. Mater. Res 26 (2011), pp. 1179–1187. doi: 10.1557/jmr.2011.120
  • M.I. Mendelev, D.J. Srolovitz, G.J. Ackland and S. Han, Effect of Fe segregation on the migration of a non-symmetric ∑5 tilt grain boundary in Al. J. Mater. Res 20 (2005), pp. 208–218. doi: 10.1557/JMR.2005.0024
  • J. Vallin, M. Mongy, K. Salama and O. Beckman, Elastic constants of aluminum. J. Appl. Phys 35 (1964), pp. 1825–1826. doi: 10.1063/1.1713749
  • E. Goens and E. Schmid, Elastische Untersuchungen an Eisen-Einkristallen. Zeitschrift Für Elektrochemie Und Angew. Phys. Chemie 37 (1931), pp. 539–540.
  • Z.G. El Chlouk, M.A. Shehadeh and R.F. Hamade, The effect of strain rate and temperature on the mechanical Behavior of Al/Fe interface under compressive loading. Metall. Mater. Trans. A Phys. Metall. Mater. Scino. 51A) (2020), pp. 2573–2589. doi: 10.1007/s11661-020-05709-0
  • R.F. Zhang, J. Wang, I.J. Beyerlein and T.C. Germann, Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scr. Mater 65 (2011), pp. 1022–1025. doi: 10.1016/j.scriptamat.2011.09.008
  • W. Yang, G. Ayoub, I. Salehinia, B. Mansoor and H. Zbib, Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta Mater. 122 (2017), pp. 99–108. doi: 10.1016/j.actamat.2016.09.039
  • I. Salehinia, S. Shao, J. Wang and H.M. Zbib, Plastic deformation of Metal/ceramic Nanolayered Composites. Jom 66 (2014), pp. 2078–2085. doi: 10.1007/s11837-014-1132-7
  • P. El Ters and M.A. Shehadeh, Modeling the temperature and high strain rate sensitivity in BCC iron: Atomistically informed multiscale dislocation dynamics simulations. Int. J. Plast 112 (2019), pp. 257–277. doi: 10.1016/j.ijplas.2018.09.002
  • M.S. Talaei, N. Nouri and S. Ziaei-Rad, Grain boundary effects on nanoindentation of Fe bicrystal using molecular dynamic. Mech. Mater 102 (2016), pp. 97–107. doi: 10.1016/j.mechmat.2016.08.016
  • L. Kubin, Dislocations, in Mesoscale Simulations and Plastic Flow, OUP Oxford, Oxford, 2013.
  • M.M.W. Dogge, R.H.J. Peerlings and M.G.D. Geers, Interface modeling in continuum dislocation transport. Mech. Mater 88 (2015), pp. 30–43. doi: 10.1016/j.mechmat.2015.04.007
  • M.R. Gilbert, P. Schuck, B. Sadigh and J. Marian, Free energy generalization of the Peierls potential in iron. Phys. Rev. Lett 111 (2013), pp. 1–5. doi: 10.1103/PhysRevLett.111.095502
  • K. Kang, V.V. Bulatov and W. Cai, Singular orientations and faceted motion of dislocations in body-centered cubic crystals. Proc. Natl. Acad. Sci. U. S. A 109 (2012), pp. 15174–15178. doi: 10.1073/pnas.1206079109
  • Z.M. Chen, M. Mrovec and P. Gumbsch, Atomistic aspects of 〈1 1 1〉 screw dislocation behavior in α-iron and the derivation of microscopic yield criterion. Model. Simul. Mater. Sci. Eng 21 (2013. doi: 10.1088/0965-0393/21/5/055023
  • C. Domain and G. Monnet, Simulation of screw dislocation motion in tron by molecular dynamics simulations. Phys. Rev. Lett 95 (2005), pp. 16–19. doi: 10.1103/PhysRevLett.95.215506
  • M.R. Gilbert, S. Queyreau and J. Marian, Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics. Phys. Rev. B - Condens. Matter Mater. Phys 84 (2011), pp. 1–11. doi: 10.1103/PhysRevB.84.174103
  • D. Caillard, On the stress discrepancy at low-temperatures in pure iron. Acta Mater. 62 (2014), pp. 267–275. doi: 10.1016/j.actamat.2013.10.007
  • R.W. Armstrong and S.M. Walley, High strain rate properties of metals and alloys. Int. Mater. Rev 53 (2008), pp. 105–128. doi: 10.1179/174328008X277795
  • B. Gurrutxaga-Lerma, D.S. Balint, D. Dini, D.E. Eakins and A.P. Sutton, Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics. Phys. Rev. Lett 114 (2015), pp. 1–5. doi: 10.1103/PhysRevLett.114.174301
  • B. Gurrutxaga-Lerma, M.A. Shehadeh, D.S. Balint, D. Dini, L. Chen and D.E. Eakins, The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron. Int. J. Plast 96 (2017), pp. 135–155. doi: 10.1016/j.ijplas.2017.05.001
  • J. P. Hirth, Theory of Dislocations. 2nd ed. Wiley, New York, 1982.
  • J.P. Hirth, H.M. Zbib and J. Lothe, Forces on high velocity dislocations. Model. Simul. Mater. Sci. Eng. Sci. Eng 6 (1998), pp. 165–169. doi: 10.1088/0965-0393/6/2/006
  • C.H. Zhang, S. Huang, J. Shen and N.X. Chen, Structural and mechanical properties of Fe-Al compounds: An atomistic study by EAM simulation. Intermetallics 52 (2014), pp. 86–91. doi: 10.1016/j.intermet.2014.04.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.