154
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On the strengthening and the strength reducing mechanisms at aluminium matrix composites reinforced with nano-sized TiCN particulates

ORCID Icon, , , &
Pages 129-153 | Received 12 Mar 2020, Accepted 03 Sep 2020, Published online: 21 Sep 2020

References

  • Y.C. Kang and S.L.-I. Chan, Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys 85 (2004), pp. 438–443. doi: 10.1016/j.matchemphys.2004.02.002
  • K. Kallip, L. Kollo, M. Leparoux and C.M. Bradbury, Nanoparticulate reinforced aluminum alloy composites produced by powder metallurgy route. in Adv. Composites for Aerospace, Marine and Land Applications II, T. Sano and T. S. Srivatsan, eds., (2015), pp. 165–174.
  • P. Ma, Y. Jia, P.K. Gokuldoss, Z. Yu, S. Yang, J. Zhao and C. Li, Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al-12Si composites. Metals. (Basel) 7 (2017), pp. 359–370. doi: 10.3390/met7090359
  • J.G. Park, D.H. Keum and Y.H. Lee, Strengthening mechanisms in carbon nanotube-reinforced aluminium composites. Carbon. N. Y. 95 (2015), pp. 690–698. doi: 10.1016/j.carbon.2015.08.112
  • A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri and D. Lahiri, Strengthening mechanism in graphene nanoplatelets reinforced aluminium composite fabricated through spark plasma sintering. Mater. Sci. Eng., A 695 (2017), pp. 20–28. doi: 10.1016/j.msea.2017.04.009
  • H. Su, W. Gao, Z. Feng and Z. Lu, Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 36 (2012), pp. 590–596. doi: 10.1016/j.matdes.2011.11.064
  • M.T. Khorshid, S.A.J. Jahromi and M.M. Moshksar, Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron sized Al2O3 particulates developed by wet attrition milling and hot extrusion. Mater. Des. 31 (2010), pp. 3880–3884. doi: 10.1016/j.matdes.2010.02.047
  • D.K. Das, P.C. Mishra, S. Singh, and R.K. Thakur, Properties of ceramic-reinforced aluminium matrix composites-a review. Int. J Mech. Mat. Eng. 9(12) (2014). doi:10.1186/s40712-014-0012-9.
  • A. Kazakewitsch and W. Riehemann, Mechanical properties of aluminum matrix nanoparticle composites. Acta Phys. Pol., A 122 (2012), pp. 516–519. doi: 10.12693/APhysPolA.122.516
  • C. Carreño-Gallardo, J.M. Mendoza-Duarte, C. López-Meléndez, I. Estrada-Guel and R. Martínez-Sánchez, Evaluation of mechanical properties of aluminum alloy (Al-2024) reinforced with carbon-coated silver nanoparticles (AgCNP) metal matrix composites. Microsc. Microanal. (Microscopy Society of America 2015) 21(Suppl. 3) (2015), pp. 1041–1042. Available at https://www.cambridge.org/core. doi: 10.1017/S1431927615006005
  • A. Mazahery, H. Abdizadeh and H.R. Baharvandi, Development of high-performance A356/nano-Al2O3 composites. Mater. Sci. Eng., A 518 (2009), pp. 61–64. doi: 10.1016/j.msea.2009.04.014
  • S.L. Pramod, S.R. Bakshi, and B.S. Murty, Aluminum-based cast in situ composites: A Review. J Mat. Eng. Perform. (ASM International) 24 (2015), pp. 1–23. Available at https://www.researchgate.net/publication/273528179. doi: 10.1007/s11665-014-1279-y
  • D. Zhang and Z. Zhan, Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties. J. Alloys Compd 654 (2016), pp. 226–233. doi: 10.1016/j.jallcom.2015.09.013
  • R. Casati and M. Vedani, Metal matrix composites reinforced by nano-particles - A Review. Metals. (Basel) 4 (2014), pp. 65–83. doi: 10.3390/met4010065
  • A.E. Nassar and E.E. Nassar, Properties of aluminum matrix nano composites prepared by powder metallurgy processing. J King Saud University – Eng. Sci. 29 (2017), pp. 295–299. doi: 10.1016/j.jksues.2015.11.001
  • A. Nazaruddin and T.S. Krishnakumar, Effect of addition of nanoparticles on the mechanical properties of aluminium. Int. J Eng. Res. Technol. 4 (2015), pp. 268–272.
  • A. Joseph, Microstructure et caractérisation mécanique multi-échelles des composites Al/(-Al-Cu-Fe synthétisés par métallurgie des poudres, Thèse Milieux denses, matériaux et composants, Ph.D. diss., Université de Poitiers, Poitiers, 2017. Available at http://theses.univ-poitiers.fr.
  • N. Perez, Electrochemistry and Corrosion Science, 2nd ed., Springer International Publishing, Switzerland, 2016. ch. 1.4 Galvanic Corrosion.
  • M. Born and E. Wolf, Principles of Optics. 6th ed. ch. 8.5 Fraunhofer diffraction at apertures of various forms; ch. A.II.4 The application of optical principles to electron optics, Pergamon Press, Oxford, 1980.
  • D.B. Williams and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed., Springer Science-Business Media, LLC, 2009. Ch. 10.3.A Forming a Thin Slice from the Bulk Sample.
  • M.F. Ashby and D.R.H. Jones, Engineering Materials I, 3rd ed., Elsevier Butterworth-Heinemann, Oxford, 2005. Part C, Yield strength, tensile strength and ductility.
  • E. Orowan, Discussion on internal stresses, in Symposium: Internal Stresses in Metals and Alloys, The Inst. of Metals, London, 1948. pp. 451–453.
  • E. Orowan, Mechanische Festigkeitseigenschaften und die Realstruktur der Kristalle. Zeitschrift für Kristallographie 89 (1934), pp. 327–343.
  • A.H. Cottrell, Theory of dislocations, in Progress in Metal Physics 4, B. Chalmers, ed., Pergamon Press Ltd., London, 1953. pp. 205–264.
  • R.W.K. Honeycombe, The Plastic Deformation of Metals, Edward Arnolds Publ. ltd, London, 1968.
  • O. Wouters, Dislocations and Precipitation Hardening. Plasticity in Aluminum Alloys at Various Length Scales, Ch. 3, Univrsity of Groningen, Groningen, 2006. Available at https://www.rug.nl/research/portal/en/publications/.
  • R. Ebeling and M.F. Ashby, Dispersion hardening of copper single crystals. Philos. Mag. 13 (1966), pp. 805–834. doi: 10.1080/14786436608212698
  • R. Ebeling and M.F. Ashby, On the determination of the number, size, spacing, and volume fraction of spherical second-phase particles from extraction replicas. Trans. AIME 236 (1966), pp. 1396–1404.
  • P.B. Hirsch and F.J. Humphreys, The deformation of single crystals of copper and copper-zinc alloys containing alumina particles I. Macroscopic properties and workhardening theory. Proc. Royal Soc. (London), A 318 (1970), pp. 45–72.
  • A. Kelly and R. B. Nicholson, Precipitation Hardening, Book Series: Progress in metal physics series, Pergamon Press, Oxford, 1963.
  • M.F. Ashby, “Physics of Strength and Plasticity, in Physics of Strength and Plasticity, Argon A.S., eds., MIT Press, Cambridge, MA, 1969. p. 113.
  • J.C. Fisher, E.W. Hart and R.H. Pry, The hardening of metal crystals by precipitate particles. Acta Metall. 1 (1953), pp. 336–339. doi: 10.1016/0001-6160(53)90109-6
  • E.W. Hart, Theory of dispersion hardening in metals. Acta Metall. 20 (1972), pp. 275–289. doi: 10.1016/0001-6160(72)90190-3
  • M.F. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag. 21(170) (1970), pp. 399–424. doi: 10.1080/14786437008238426
  • R.H. Jones, Predicting the Stress-Strain Behavior of Polycrystalline (-Iron Containing Hard Spherical Particles), U. S. Atomic Energy Commission, W-7405-ENG-48, Lawrence Berkeley National Laboratory, Washington, DC1973. Available at https://escholarship.org/uc/item/0gj769z4.
  • A.J. Ardell, Precipitation hardening. Metall. Trans. A 16 (1985), pp. 2131–2165. doi: 10.1007/BF02670416
  • J.-L. Strudel, Ch. 25. mechanical properties of multiphase alloys, in Physical Metallurgy, 4th ed. Cahn R.W., Haasen P., eds., North-Holland, Amsterdam, 1996. pp. 2106–2206.
  • H. Gleiter and E. Hornbogen, Theorie der Wechselwirkung von Versetzungen mit kohärenten geordneten Zonen (I). Physica Status Solidi (b) 12 (1965), pp. 235–250. doi: 10.1002/pssb.19650120122
  • A. Melander, The critical resolved shear stress of dispersion strengthened alloys. Scand. J. Metall 7 (1978), pp. 109.
  • M. Taya and R.J. Arsenault, Metal Matrix Composites – Thermo-Mechanical Behavior, Pergamon press, 1989.
  • D.C. Dunand and A. Mortensen, Thermal mismatch dislocations produced by large particles in strain hardening matrix, in Metal Matrix Composites, 1st ed., vol. 15, G. Chadwick, L. Froyen, North-Holland, Amsterdam, 1991. pp. 179–185.
  • P. Haasen, Ch.23 mechanical properties of solid solutions, in Physical Metallurgy4th ed.3Cahn R.W., Haasen P., eds., North Holland, Amsterdam, 1996. pp. 2010–2073.
  • Y. Sun, C. Lu, H. Yu, et al., Nanomechanical properties of TiCN and TiCN/Ti coatings on Ti prepared by Filtered Arc Deposition. Mat. Sci. Eng. A 625 (2015), pp. 56–64. doi: 10.1016/j.msea.2014.11.093
  • W.D. . Callister Jr., Materials Science and Engineering. An Introduction. 7th ed.John Wiley & Sons Inc., New York, 2007. ch.8.
  • K. Hellan, Introducton to Fracture Mechanics, McGraw-Hill, New York, 1984.
  • S. Chou, J. Huang, D. Lii and H. Lu, The mechanical properties and microstructure of Al2O3/aluminum alloy composites fabricated by squeeze casting. J. Alloys Compd. 436 (2007), pp. 124–130. doi: 10.1016/j.jallcom.2006.07.062
  • E.A. Brandes and G.B. Brook, (eds.) Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, 1999.
  • J. Humphreys and P.B. Hirsch, The deformation of single crystals of copper and copper-zinc alloys containing alumina particles II. microstructure and dislocation-particle interactions. Proc. Royal Soc. (London) A 318 (1970), pp. 73–92.
  • P.M. Hazzledine and P.B. Hirsch, A Coplanar Orowan loops model for Dispersion hardening. Philos. Mag. 30 (1974), pp. 1331–1351. doi: 10.1080/14786437408207286
  • S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970. ch. 13.
  • A.P. Boresi and R.J. Schmidt, Advanced Mechanics of Materials, 6th ed., John Wiley & Sons, Inc, New York, 2003. ch. 14.
  • W. Rostoker and J.R. Dvorak, Interpretation of Metallographic Structures, Academic Press, New York - London, 1965. ch. 5.
  • G. Zlateva and Z. Martinova, Microstructure of Metals and Alloys, An Atlas of Transmission Electron Microscopy Images, CRC Press, Taylor and Francis Group, Boca Raton, FL, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.