473
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of transition elements on dispersoid formation and elevated-temperature mechanical properties in 6082 aluminum alloy

, , &
Pages 96-116 | Received 17 Apr 2020, Accepted 16 Sep 2020, Published online: 29 Sep 2020

References

  • K. Liu and X.-G. Chen, Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater. Des 84 (2015), pp. 340–350. doi: 10.1016/j.matdes.2015.06.140
  • K. Liu and X.-G. Chen, Evolution of intermetallics, dispersoids, and elevated temperature properties at various Fe contents in Al-Mn-Mg 3004 alloys. Metall. Mater. Trans. B 47 (2016), pp. 3291–3300. doi: 10.1007/s11663-015-0564-y
  • Z. Li, Z. Zhang and X.-G. Chen, Microstructure, elevated-temperature mechanical properties and creep resistance of dispersoid-strengthened Al-Mn-Mg 3xxx alloys with varying Mg and Si contents. Mater. Sci. Eng. A 708 (2017), pp. 383–394. doi: 10.1016/j.msea.2017.10.013
  • C. Li, K. Liu and X.-G. Chen, Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al-Mg-Si 6082 alloys. J. Mater. Sci. Technol 39 (2020), pp. 135–143. doi: 10.1016/j.jmst.2019.08.027
  • Y.J. Li and L. Arnberg, Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater. 51 (2003), pp. 3415–3428. doi: 10.1016/S1359-6454(03)00160-5
  • H.-W. Huang and B.-L. Ou, Evolution of precipitation during different homogenization treatments in a 3003 aluminum alloy. Mater. Des 30 (2009), pp. 2685–2692. doi: 10.1016/j.matdes.2008.10.012
  • A.M.F. Muggerud, E.A. Mørtsell, Y. Li and R. Holmestad, Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures. Mater. Sci. Eng. A 567 (2013), pp. 21–28. doi: 10.1016/j.msea.2013.01.004
  • Y.J. Li, A.M.F. Muggerud, A. Olsen and T. Furu, Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater. 60 (2012), pp. 1004–1014. doi: 10.1016/j.actamat.2011.11.003
  • Y.J. Li and L. Arnberg, Precipitation of dispersoids in DC-cast AA3103 alloy during heat treatment, in Essential Readings in Light Metals, J.F. Grandfield, D.G. Eskin, eds., Springer, Cham, 2016. pp. 1021–1027.
  • K. Liu, H. Ma and X.-G. Chen, Enhanced elevated-temperature properties via Mo addition in Al-Mn-Mg 3004 alloy. J. Alloys Compd 694 (2017), pp. 354–365. doi: 10.1016/j.jallcom.2016.10.005
  • C. Booth-Morrison, D.C. Dunand and D.N. Seidman, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 59 (2011), pp. 7029–7042. doi: 10.1016/j.actamat.2011.07.057
  • M.E. van Dalen, D.C. Dunand and D.N. Seidman, Nanoscale precipitation and mechanical properties of Al-0.06 at.% Sc alloys microalloyed with Yb or Gd. J. Mater. Sci 41 (2006), pp. 7814–7823. doi: 10.1007/s10853-006-0664-9
  • A.R. Farkoosh, X.-G. Chen and M. Pekguleryuz, Interaction between molybdenum and manganese to form effective dispersoids in an Al-Si-Cu-Mg alloy and their influence on creep resistance. Mater. Sci. Eng. A 627 (2015), pp. 127–138. doi: 10.1016/j.msea.2014.12.115
  • A.R. Farkoosh, X.-G. Chen and M. Pekguleryuz, Dispersoid strengthening of a high temperature Al-Si-Cu-Mg alloy via Mo addition. Mater. Sci. Eng. A 620 (2015), pp. 181–189. doi: 10.1016/j.msea.2014.10.004
  • N. Bayat and T. Carlberg, Influence of heat treatment on the surface structure of 6082 Al alloys. Metall. Mater. Trans. A 48 (2017), pp. 5085–5094. doi: 10.1007/s11661-017-4207-6
  • L. Calabrese, E. Proverbio, G. Di Bella, G. Galtieri and C. Borsellino, Failure behaviour of SPR joints after salt spray test. Eng. Struct 82 (2015), pp. 33–43. doi: 10.1016/j.engstruct.2014.10.020
  • J.H. Li, A. Wimmer, G. Dehm and P. Schumacher, Intermetallic phase selection during homogenization for AA6082 alloy. Philos. Mag 94 (2014), pp. 830–846. doi: 10.1080/14786435.2013.868943
  • M. Cabibbo, E. Evangelista and M. Vedani, Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy. Metall. Mater. Trans. A 36 (2005), pp. 1353–1364. doi: 10.1007/s11661-005-0226-9
  • E.J. Fogle, B.Y. Lattimer, S. Feih, E. Kandare, A.P. Mouritz and S.W. Case, Compression load failure of aluminum plates due to fire. Eng. Struct 34 (2012), pp. 155–162. doi: 10.1016/j.engstruct.2011.09.014
  • Y. Liu, H. Liu and Z. Chen, Post-fire mechanical properties of aluminum alloy 6082-T6. Constr. Build. Mater 196 (2019), pp. 256–266. doi: 10.1016/j.conbuildmat.2018.10.237
  • C. Li, K. Liu, N. Parson and X.-G. Chen, The Effect of Heat Treatments on Precipitation Behavior of Dispersoids in Al-Mg-Si-Mn Alloy, ICAA16, Montreal, QC, 2018.
  • S.G. Shabestari, The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. Mater. Sci. Eng. A 383 (2004), pp. 289–298. doi: 10.1016/S0921-5093(04)00832-9
  • G. Timelli and F. Bonollo, The influence of Cr content on the microstructure and mechanical properties of AlSi9Cu3(Fe) die-casting alloys. Mater. Sci. Eng. A 528 (2010), pp. 273–282. doi: 10.1016/j.msea.2010.08.079
  • T.O. Mbuya, B.O. Odera and S.P. Ng’ang’a, Influence of iron on castability and properties of aluminium silicon alloys: literature review. Int. J. Cast Met. Res 16 (2003), pp. 451–465. doi: 10.1080/13640461.2003.11819622
  • L. Anantha Narayanan, F.H. Samuel and J.E. Gruzleski, Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy. Metall. Mater. Trans. A 25 (1994), pp. 1761–1773. doi: 10.1007/BF02668540
  • L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworth, London, 1976.
  • F.A. Crossley and L.F. Mondolfo, Mechanism of grain refinement in aluminum alloys. JOM 3 (1951), pp. 1143–1148. doi: 10.1007/BF03397424
  • B.D. Warr, G.W. Delamore and R.W. Smith, The grain refinement of high-purity aluminum by aluminum-transition metal alloys. Metall. Mater. Trans. B 6 (1975), pp. 625–629. doi: 10.1007/BF02913858
  • G.S. Wang, K. Liu and S.L. Wang, Evolution of elevated-temperature strength and creep resistance during multi-step heat treatments in Al-Mn-Mg alloy. Materials 11 (2018), pp. 1–14.
  • R.G. Kamat, AA3104 can-body stock ingot: characterization and homogenization. JOM 48 (1996), pp. 34–38. doi: 10.1007/BF03222964
  • K. Liu and X.-G. Chen, Evolution of microstructure and elevated-temperature properties with Mn addition in Al–Mn–Mg alloys. J. Mater. Res 32 (2017), pp. 2585–2593. doi: 10.1557/jmr.2017.239
  • L. Lodgaard and N. Ryum, Precipitation of dispersoids containing Mn and:or Cr in Al–Mg–Si alloys. Mater. Sci. Eng. A 283 (2000), pp. 144–152. doi: 10.1016/S0921-5093(00)00734-6
  • K.E. Knipling, D.C. Dunand and D.N. Seidman, Criteria for developing castable, creep-resistant aluminum-based alloys - A review. Int. J. Mater. Res 97 (2006), pp. 246–265.
  • M.F. Ashby, Oxide dispersion strengthening, AIME Conference Proceedings, New York Meeting Society, New York, 1966.
  • J. Qin, Z. Zhang and X.-G. Chen, Mechanical properties and strengthening mechanisms of Al-15 Pct B4C composites with Sc and Zr at elevated temperatures. Metall. Mater. Trans. A 47 (2016), pp. 4694–4708. doi: 10.1007/s11661-016-3606-4
  • Z. Li, Z. Zhang and X.-G. Chen, Improvement in the mechanical properties and creep resistance of Al-Mn-Mg 3004 alloy with Sc and Zr addition. Mater. Sci. Eng. A 729 (2018), pp. 196–207. doi: 10.1016/j.msea.2018.05.055
  • G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1976.
  • O.D. Sherby and O.A. Ruano, Rate-controlling processes in creep of subgrain containing aluminum materials. Mater. Sci. Eng. A 410-411 (2005), pp. 8–11. doi: 10.1016/j.msea.2005.08.077
  • O.D. Sherby, A. Goldberg and O.A. Ruano, Solute-diffusion-controlled dislocation creep in pure aluminum containing 0.026 at.% Fe. Philos. Mag 84 (2004), pp. 2417–2434. doi: 10.1080/14786430410001690006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.