88
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Superstructure formation in a ternary Yb-Cd-Mg 1/1 quasicrystal approximant

ORCID Icon
Pages 257-275 | Received 18 Aug 2020, Accepted 30 Sep 2020, Published online: 19 Oct 2020

References

  • D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984), pp. 1951–1953.
  • D. Levine and P.J. Steinhardt, Quasicrystals: A new class of ordered structures, Phys. Rev. Lett. 53 (1984), pp. 2477–2480.
  • A.P. Tsai, J.Q. Guo, E. Abe, H. Takakura, and T.J. Sato, Alloys: A stable binary quasicrystal, Nature408 (2000), pp. 537–538.
  • J.Q. Guo, E. Abe, and A.P. Tsai, Stable icosahedral quasicrystals in binary Cd–Ca and Cd–Yb systems, Phys. Rev. B 62 (2000), pp. R14605–R14608.
  • H. Takakura, C.P. Gómez, A. Yamamoto, M. de Boissieu, and A.P. Tsai, Atomic structure of the binary icosahedral Yb-Cd quasicrystal, Nat. Mater. 6 (2007), pp. 58–63.
  • C.L. Henley, Sphere packings and local environments in Penrose tilings, Phys. Rev. B 34 (1986), pp. 797–816.
  • H. Takakura, Geometrical property of the cluster model of the Yb–Cd icosahedral quasicrystal, Philos. Mag. 88 (2008), pp. 1905–1912.
  • H. Takakura and R. Strzałka, Cluster environments in a twelve-fold packing model of icosahedral quasicrystals, J. Phys. Conf. Ser. 809 (2017), pp. 012002.
  • A. Palenzona, The ytterbium-cadmium system, J. Less Common Met. 25 (1971), pp. 367–372.
  • H. Takakura, J. Guo, and A.P. Tsai, Crystal and quasicrystal structures in Cd–Yb and Cd–Ca binary alloys, Philos. Mag. Lett., 81 (2001), pp. 411–418.
  • C. Pay Gómez and S. Lidin, Comparative structural study of the disordered MCd6 quasicrystal approximants, Phys. Rev. B 68 (2003), p. 024203.
  • J. Guo, E. Abe, and A. Tsai, Stable Cd-Mg-Yb and Cd-Mg-Ca icosahedral quasicrystals with wide composition ranges, Philos. Mag. Lett. 82 (2002), pp. 27–35.
  • C. Pay Gómez and A.P. Tsai, Crystal chemistry and chemical order in ternary quasicrystals and approximants, C. R. Phys. 15 (2013), pp. 30–39.
  • T. Yamada, H. Takakura, M. De Boissieu, and A.P. Tsai, Atomic structures of ternary Yb–Cd–Mg icosahedral quasicrystals and a 1/1 approximant, Acta Crystallogr. Sect. B Struct. Sci. Crystal Eng. Mater. 73 (2017), pp. 1125–1141.
  • C. Pay Gómez and S. Lidin, Superstructure of Eu4Cd25: A quasicrystal approximant, Chem. Eur. J.10 (2004), pp. 3279–3285.
  • V. Elser, Indexing problems in quasicrystal diffraction, Phys. Rev. B 32 (1985), pp. 4892–4898.
  • W.E. Pearson, The Crystal Chemistry and Physics of Metals and Alloys, John Wiley & Sons, Inc., New York, 1972.
  • G. Oszlányi and A. Sütő, Ab initio structure solution by charge flipping, Acta Crystallogr. Sect. A Found. Crystallogr. 60 (2004), pp. 134–141.
  • G. Oszlányi and A. Sütő, Ab initio structure solution by charge flipping. II. Use of weak reflections, Acta Crystallogr. Sect. A Found. Crystallogr. 61 (2005), pp. 147–152.
  • L. Palatinus and G. Chapuis, Superflip–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, J. Appl. Crystallogr. 40 (2007), pp. 786–790.
  • V. Petříček, M. Dušek, and L. Palatinus, Crystallographic computing system JANA2006: General features, Z. Krist.-Cryst. Mater. 229 (2014), pp. 345–352.
  • G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C: Struct. Chem.71 (2015), pp. 3–8.
  • K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011), pp. 1272–1276.
  • A. Yamamoto, Crystallography of quasiperiodic crystals, Acta Crystallogr. Sect. A Found. Crystallogr.52 (1996), pp. 509–560.
  • T. Janssen, G. Chapuis, and M. De Boissieu, Aperiodic Crystals: From Modulated Phases to Quasicrystals, Oxford University Press, Oxford, 2007.
  • M. de Boissieu, H. Takakura, C.P. Gómez, A. Yamamoto, and A.P. Tsai, Structure determination of quasicrystals, Philos. Mag. 87 (2007), pp. 2613–2633.
  • Y. Kaneko, Y. Arichika, and T. Ishimasa, Icosahedral quasicrystal in annealed ZnMgSc alloys, Philos. Mag. Lett. 81 (2001), pp. 777–787.
  • M. de Boissieu, S. Francoual, Y. Kaneko, and T. Ishimasa, Diffuse scattering and phason fluctuations in the Zn-Mg-Sc icosahedral quasicrystal and its Zn-Sc periodic approximant, Phys. Rev. Lett. 95 (2005), p. 105503.
  • T. Ishimasa, Y. Kaneko, and H. Kaneko, A Zn-based icosahedral quasicrystal classified into the same structure type as Cd-based icosahedral quasicrystals?, J. Alloys. Compd. 342 (2002), pp. 13–17.
  • S. Kashimoto, R. Maezawa, Y. Kasano, T. Mitani, and T. Ishimasa, A new series of icosahedral quasicrystals in Zn-M-Sc (M= Ag, Au, Pd, Pt) alloys, Jpn. J. Appl. Phys. 42 (2003), pp. L1268.
  • Q. Lin and J.D. Corbett, New stable icosahedral quasicrystalline phase in the Sc–Cu–Zn system, Philos. Mag. Lett. 83 (2003), pp. 755–762.
  • R. Maezawa, S. Kashimoto, and T. Ishimasa, Icosahedral quasicrystals in Zn–T–Sc (T= Mn, Fe, Co or Ni) alloys, Philos. Mag. Lett. 84 (2004), pp. 215–223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.