403
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Understanding raft formation and precipitate shearing during double minimum creep in a γ′-strengthened single crystalline Co-base superalloy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 326-353 | Received 14 Nov 2019, Accepted 01 Oct 2020, Published online: 28 Oct 2020

References

  • J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Karinuma and K. Ishida, Cobalt-base high-temperature alloys. Science 312 (2006), pp. 90–91.
  • A. Suzuki, H. Inui, and T.M. Pollock, L12-strengthened cobalt-base superalloys. Annu. Rev. Mater. Res. 45 (2015), pp. 345–368.
  • S. Neumeier, L.P. Freund, and M. Göken, Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance. Scr. Mater. 109 (2015), pp. 104–107.
  • M.S. Titus, A. Suzuki and T.M. Pollock, High temperature creep of new L12 containing cobalt-base superalloys, in Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, eds., Minerals, Metals & Materials Soc, Warrendale, 2012. pp. 823–832.
  • F. Xue, M. Wang and Q. Feng, Alloying effects on heat-treated microstructure in Co-Al-W-base superalloys at 1300°C and 900°C, in Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, eds., Minerals, Metals & Materials Soc, Warrendale, 2012. pp. 813–821.
  • A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scr. Mater. 63 (2010), pp. 1197–1200.
  • H.Y. Yan, V.A. Vorontsov, J. Coakley, N.G. Jones, H.J. Stone and D. Dye, Quaternary alloying effects and the prospects for a new generation of Co-base superalloys, in Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, eds., Minerals, Metals & Materials Soc, Warrendale, 2012. pp. 705–714.
  • F. Xue, H.J. Zhou, Q.Y. Shi, X.H. Chen, H. Chang, M.L. Wang, and Q. Feng, Creep behavior in a γ′ strengthened Co–Al–W–Ta–Ti single-crystal alloy at 1000 °C. Scr. Mater. 97 (2015), pp. 37–40.
  • M.S. Titus, Y.M. Eggeler, A. Suzuki and T.M. Pollock, Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys. Acta Mater. 82 (2015), pp. 530–539.
  • L.P. Freund, O.M.D.M. Messé, J.S. Barnard, M. Göken, S. Neumeier and C.M.F. Rae, Segregation assisted microtwinning during creep of a polycrystalline L12-hardened Co-base superalloy. Acta Mater. 123 (2017), pp. 295–304.
  • Y.M. Eggeler, J. Müller, M.S. Titus, A. Suzuki, T.M. Pollock, and E. Spiecker, Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Mater. 113 (2016), pp. 335–349.
  • A. Suzuki and T.M. Pollock, High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys. Acta Mater. 56 (2008), pp. 1288–1297.
  • F. Pyczak, A. Bauer, M. Göken, S. Neumeier, U. Lorenz, M. Oehring, N. Schell, A. Schreyer, A. Stark and F. Symanzik, Plastic deformation mechanisms in a crept L12 hardened Co-base superalloy. Mater. Sci. Eng. A. 571 (2013), pp. 13–18.
  • H.J. Zhou, H. Chang, and Q. Feng, Transient minimum creep of a γ′ strengthened Co-base single-crystal superalloy at 900 °C. Scr. Mater. 135 (2017), pp. 84–87.
  • S. Lu, S. Antonov, L. Li, and Q. Feng, Two steady-state creep stages in Co-Al-W-base single-crystal superalloys at 1273 K/137 MPa. Metall. Mater. Trans. A 49 (2018), pp. 4079–4089.
  • W. Schneider and H. Mughrabi, Investigation of the creep and rupture behaviour of the single-crystal nickel-base superalloy CMSX-4 between 800-1100°C. in Proc. 5th Int. Conf. on ‘Creep and Fracture of Engineering Materials and Structures’, B. Wilshire and R.W. Evans, eds., Institute of Materials, London, 1993, pp. 209–220.
  • T.M. Pollock and R.D. Field, Dislocations and high-temperature plastic deformation of superalloy single crystals, in Dislocations Solids, F.R.N. Nabarro, M.S. Duesbery, eds., Elsevier, Amsterdam, 2002. pp. 547–618.
  • R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.
  • H. Mughrabi, W. Schneider, V. Sass and C. Lang, The effect of raft formation on the high-temperature creep deformation behaviour of the monocrystalline nickel-base superalloy CMSX-4, in ICSMA 10, H. Oikawa, K. Maruyama, S. Takeuchi, M. Yamaguchi, eds., Japan Institute of Metals, Sendai, 1994. pp. 705–708.
  • R.C. Reed, N. Matan, D.C. Cox, M.A. Rist and C.M.F. Rae, Creep of CMSX-4 superalloy single crystals: effects of rafting at high temperature. Acta Mater. 47 (1999), pp. 3367–3381.
  • X. Wu, P. Wollgramm, C. Somsen, A. Dlouhy, A. Kostka and G. Eggeler, Double minimum creep of single crystal Ni-base superalloys. Acta Mater. 112 (2016), pp. 242–260.
  • C.M.F. Rae and R.C. Reed, Primary creep in single crystal superalloys: origins, mechanisms and effects. Acta Mater. 55 (2007), pp. 1067–1081.
  • T.M. Pollock and A.S. Argon, Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall. Mater. 40 (1992), pp. 1–30.
  • A. Epishin and T. Link, Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses. Philos. Mag. 84 (2004), pp. 1979–2000.
  • K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, and H. Inui, Creep deformation of single crystals of new Co–Al–W-based alloys with fcc/L12 two-phase microstructures. Philos. Mag. 92 (2012), pp. 4011–4027.
  • F. Xue, C.H. Zenk, L.P. Freund, M. Hoelzel, S. Neumeier, and M. Göken, Double minimum creep in the rafting regime of a single-crystal Co-base superalloy. Scr. Mater. 142 (2018), pp. 129–132.
  • M.S. Titus, A. Suzuki, and T.M. Pollock, Creep and directional coarsening in single crystals of new γ-γ′ cobalt-base alloys. Scr. Mater. 66 (2012), pp. 574–577.
  • A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer and M. Göken, Creep properties of different γ′-strengthened Co-base superalloys. Mater. Sci. Eng. A 550 (2012), pp. 333–341.
  • F. Xue, H. Zhou, X. Chen, Q. Shi, H. Chang, M. Wang, X. Ding and Q. Feng, Creep behavior of a novel Co-Al-W-base single crystal alloy containing Ta and Ti at 982°C. MATEC 14 (2014), pp. 15002.
  • Y. Li, F. Pyczak, J. Paul, M. Oehring, U. Lorenz, Z. Yao and Y. Ning, Rafting of γ′ precipitates in a Co-9Al-9W superalloy during compressive creep. Mater. Sci. Eng. A. 719 (2018), pp. 43–48.
  • F. Pyczak, A. Bauer, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, J. Paul, N. Schell, A. Schreyer, A. Stark, and F. Symanzik, The effect of tungsten content on the properties of L12-hardened Co–Al–W alloys. J. Alloys Compd. 632 (2015), pp. 110–115.
  • A. Heckl, R. Rettig and R.F. Singer, Solidification characteristics and segregation behavior of nickel-base superalloys in dependence on different rhenium and ruthenium contents. Metall. Mater. Trans. A 41 (2010), pp. 202.
  • A. Epishin, T. Link, U. Brückner and P.D. Portella, Kinetics of the topological inversion of the γ/γ′-microstructure during creep of a nickel-based superalloy. Acta Mater. 49 (2001), pp. 4017–4023.
  • C. Carry and J.L. Strudel, Apparent and effective creep parameters in single crystals of a nickel base superalloy—I Incubation period. Acta Metall. 25 (1977), pp. 767–777.
  • F.R.N. Nabarro, Rafting in superalloys. Metall. Mater. Trans. A. 27 (1996), pp. 513–530.
  • J.X. Zhang, J.C. Wang, H. Harada and Y. Koizumi, The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Mater. 53 (2005), pp. 4623–4633.
  • C.Y. Chen and W.M. Stobbs, Interfacial segregation and influence of antiphase boundaries on rafting in a γ/γ′ alloy. Metall. Mater. Trans. A 35 (2004), pp. 733–740.
  • O. Paris, M. Fährmann, E. Fährmann, T.M. Pollock and P. Fratzl, Early stages of precipitate rafting in a single crystal NiAlMo model alloy investigated by small-angle X-ray scattering and TEM. Acta Mater. 45 (1997), pp. 1085–1097.
  • D. Barba, E. Alabort, S. Pedrazzini, D.M. Collins, A.J. Wilkinson, P.A.J. Bagot, M.P. Moody, C. Atkinson, A. Jérusalem and R.C. Reed, On the microtwinning mechanism in a single crystal superalloy. Acta Mater. 135 (2017), pp. 314–329.
  • L. Wang, M. Oehring, U. Lorenz, J. Yang, and F. Pyczak, Influence of alloying additions on L12 decomposition in γ-γ′ Co-9Al-9W-2X quaternary alloys. Scr. Mater. 154 (2018), pp. 176–181.
  • T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma and K. Ishida, Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems. Intermetallics 32 (2013), pp. 274–283.
  • T. Link, A. Epishin, and B. Fedelich, Inhomogeneity of misfit stresses in nickel-base superalloys: effect on propagation of matrix dislocation loops. Philos. Mag. 89 (2009), pp. 1141–1159.
  • T.M. Pollock and A.S. Argon, Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta Metall. Mater. 42 (1994), pp. 1859–1874.
  • W. Schneider, Hochtemperaturkriechverhalten und Mikrostruktur der einkristallinen Nickelbasis-Superlegierung CMSX-4 bei Temperaturen von 800°C bis 1100°C, Ph.D. diss., Universität Erlangen-Nürnberg, 1993.
  • R.A. MacKay and L.J. Ebert, The development of γ-γ′ lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing. Metall. Trans. A 16 (1985), pp. 1969–1982.
  • M.V. Nathal, R.A. MacKay and R.V. Miner, Influence of precipitate morphology on intermediate temperature creep properties of a nickel-base superalloy single crystal. Metall. Trans. A 20 (1989), pp. 133–141.
  • P. Caron, P.J. Henderson, T. Khan, and M. McLean, On the effects of heat treatments on the creep behaviour of a single crystal superalloy. Scr. Metall. 20 (1986), pp. 875–880.
  • F.R.N. Nabarro, The Physics of Creep, Taylor & Francis, London, 1995.
  • S. Miura, K. Ohkubo, and T. Mohri, Mechanical properties of Co-based L12 intermetallic compound Co3(Al,W). Mater. Trans. 48 (2007), pp. 2403–2408.
  • T.M. Smith, B.D. Esser, N. Antolin, A. Carlsson, R.E.A. Williams, A. Wessman, T. Hanlon, H.L. Fraser, W. Windl, D.W. McComb and M.J. Mills, Phase transformation strengthening of high-temperature superalloys. Nat. Commun 7 (2016), pp. 13434.
  • K. Kakehi, Tension/compression asymmetry in creep behavior of a Ni-based superalloy. Scr. Mater. 41 (1999), pp. 461–465.
  • N. Tsuno, S. Shimabayashi, K. Kakehi, C.M.F. Rae and R.C. Reed, Tension/compression asymmetry in yield and creep strengths of Ni-based superalloys, in Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, S.A. Woodard, eds., Minerals, Metals & Materials Soc, Warrendale, 2008. pp. 433–442.
  • M. Lenz, Y.M. Eggeler, J. Müller, C.H. Zenk, N. Volz, P. Wollgramm, G. Eggeler, S. Neumeier, M. Göken and E. Spiecker, Tension/Compression asymmetry of a creep deformed single crystal Co-base superalloy. Acta Mater. 166 (2019), pp. 597–610.
  • L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills, Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Prog. Mater. Sci. 54 (2009), pp. 839–873.
  • M. Kolbe, The high temperature decrease of the critical resolved shear stress in nickel-base superalloys. Mater. Sci. Eng. A. 319–321 (2001), pp. 383–387.
  • T.M. Smith, B.S. Good, T.P. Gabb, B.D. Esser, A.J. Egan, L.J. Evans, D.W. McComb and M.J. Mills, Effect of stacking fault segregation and local phase transformations on creep strength in Ni-base superalloys. Acta Mater. 172 (2019), pp. 55–65.
  • D. Barba, T.M. Smith, J. Miao, M.J. Mills and R.C. Reed, Segregation-assisted plasticity in Ni-based superalloys. Metall. Mater. Trans. A 49 (2018), pp. 4173–4185.
  • T.M. Smith, B.D. Esser, B. Good, M.S. Hooshmand, G.B. Viswanathan, C.M.F. Rae, M. Ghazisaeidi, D.W. McComb and M.J. Mills, Segregation and phase Transformations along superlattice intrinsic stacking faults in Ni-Based superalloys. Metall. Mater. Trans. A 49 (2018), pp. 4186–4198.
  • S. Lu, S. Antonov, L. Li, C. Liu, X. Zhang, Y. Zheng, H.L. Fraser and Q. Feng, Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress. Acta Mater. 190 (2020), pp. 16–28.
  • M.S. Titus, A. Mottura, G. Babu Viswanathan, A. Suzuki, M.J. Mills and T.M. Pollock, High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Mater. 89 (2015), pp. 423–437.
  • S.K. Makineni, A. Kumar, M. Lenz, P. Kontis, T. Meiners, C. Zenk, S. Zaefferer, G. Eggeler, S. Neumeier, E. Spiecker, D. Raabe and B. Gault, On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy. Acta Mater. 155 (2018), pp. 362–371.
  • J. He, C.H. Zenk, X. Zhou, S. Neumeier, D. Raabe, B. Gault and S.K. Makineni, On the atomic solute diffusional mechanisms during compressive creep deformation of a Co-Al-W-Ta single crystal superalloy. Acta Mater. 184 (2020), pp. 86–99.
  • F. Xue, H.J. Zhou and Q. Feng, Improved high-temperature microstructural stability and creep property of novel Co-base single-crystal alloys containing Ta and Ti. JOM 66 (2014), pp. 2486–2494.
  • M.S. Titus, R.K. Rhein, P.B. Wells, P.C. Dodge, G.B. Viswanathan, M.J. Mills, A.V. der Ven, and T.M. Pollock, Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects. Sci. Adv. 2 (2016), pp. e1601796.
  • H. Mughrabi, The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—with special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 81 (2014), pp. 21–29.
  • A. Mottura, A. Janotti and T.M. Pollock, Alloying effects in the γ′ phase of Co-based superalloys, in Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, eds., Minerals, Metals & Materials Soc, Warrendale, 2012. pp. 685–693.
  • A. Mottura, A. Janotti and T.M. Pollock, A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al,W). Intermetallics 28 (2012), pp. 138–143.
  • F. Xue, H.J. Zhou, X.F. Ding, M.L. Wang, and Q. Feng, Improved high temperature γ′ stability of Co-Al-W-base alloys containing Ti and Ta. Mater. Lett. 112 (2013), pp. 215–218.
  • S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz and M. Göken, Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo. Acta Mater. 106 (2016), pp. 304–312.
  • I. Povstugar, C.H. Zenk, R. Li, P.-P. Choi, S. Neumeier, O. Dolotko, M. Hoelzel, M. Göken, and D. Raabe, Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ′ strengthened Co base superalloys. Mater. Sci. Technol. 32 (2016), pp. 220–225.
  • M. Kolb, C.H. Zenk, A. Kirzinger, I. Povstugar, D. Raabe, S. Neumeier, and M. Göken, Influence of rhenium on γ′-strengthened cobalt-base superalloys. J. Mater. Res. 32 (2017), pp. 2551–2559.
  • D.J. Sauza, P.J. Bocchini, D.C. Dunand and D.N. Seidman, Influence of ruthenium on microstructural evolution in a model CoAlW superalloy. Acta Mater. 117 (2016), pp. 135–145.
  • Y. Koizumi, T. Kobayashi, T. Yokokawa, J.X. Zhang, M. Osawa, H. Harada, Y. Aoki and M. Arai, Development of next-generation Ni-base single crystal superalloys, in Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, eds., Minerals, Metals & Materials Soc, Warrendale, 2004. pp. 35–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.