127
Views
10
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Variations in the band gap of semiconducting glassy chalcogenides with composition

ORCID Icon, , &
Pages 450-467 | Received 18 Dec 2019, Accepted 19 Oct 2020, Published online: 06 Nov 2020

References

  • M.A. Popescu, Non-Crystalline Chalcogenides, Kluwer Academic Publishers, 2000.
  • K. Tanaka and K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials, Springer, 2011.
  • R. Fairman and B. Ushkov, Semiconducting Chalcogenide Glass III: Applications of Chalcogenide Glasses, Elsevier, 2004.
  • R.P. Wang, Amorphous Chalcogenides: Advances and Applications, Pan Stanford Publishing, 2014.
  • A. Andriesh, M. Iovu and S. Shutov, Optical and photoelectrical properties of chalcogenide glasses, semiconductors and Semimetals. Elsevier (2004), pp. 115–200.
  • A.H. Moharram, A.A. Othman, H.H. Amer and A. Dahshan, Experimental characterization of amorphous As–Se–Sb alloys. J. Non-Cryst. Solids 352 (2006), pp. 2187–2192.
  • F. Smektala, C. Quemard, V. Couderc and A. Barthelemy, Non-linear optical properties of chalcogenide glasses measured by Z-scan. J. Non-Cryst. Solids 274 (2000), pp. 232–237.
  • M. Munzar and L. Tichy, Far-infrared spectra and bonding arrangement in Ge–As–S–Se glasses. J. Phys. Chem. Solids 61 (2000), pp. 1647–1652.
  • J.T. Edmond, Measurements of electrical conductivity and optical absorption In chalcogenide glasses. J. Non-Cryst. Solids 1 (1968), pp. 39–48.
  • K.A. Aly, On the study of the optical constants for different compositions of Snx(GeSe)100−x thin films in terms of the electronic polarizability, electronegativity and bulk modulus. Appl. Phys. A 120 (2015), pp. 293–299.
  • I. Sharma, S.K. Tripathi, A. Monga and P.B. Barman, Electrical properties of a-Ge–Se–In thin films. J. Non-Cryst. Solids 354 (2008), pp. 3215–3219.
  • G. Saffarini, J.M. Saiter and H. Schmitt, The composition dependence of the optical band gap in Ge–Se–In thin films. Opt. Mater. 29 (2007), pp. 1143–1147.
  • H.H. Hegazy, A. Dahshan and K.A. Aly, Influence of Cu content on physical characterization and optical properties of new amorphous Ge–Se–Sb–Cu thin films. Mater. Res. Express 6 (2019), pp. 1–6.
  • F. Xia, S. Baccaro, D. Zhao, M. Falconieri and G. Chen, Gamma ray irradiation induced optical band gap variations in chalcogenide glasses. Nucl. Instr. Methods Phys. Res. B 234 (2005), pp. 525–532.
  • H.S. Deepika and N.S. Saxena, Optical characterization of nanostructured Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) films. Opt. Quantum Electron. 51 (2018), pp. 1–11.
  • A. Dahshan and K.A. Aly, Optical constants of new amorphous As–Ge–Se–Sb thin films. Acta Mater. 56 (2008), pp. 4869–4875.
  • D. Arsova, Bond arrangement and optical band gap in GexAs(40-x)S(Se)60 glasses and thin films. J. Phys. Chem. Solids 51 (1996), pp. 1279–1283.
  • D. Richardson, The composition dependence of energy bands in mixed semi- conductor systems with zincblende structures. J. Phys. C Solid State Phys. 4 (1971), pp. 289–292.
  • C.S. Schnohr, Compound semiconductor alloys: from atomic-scale structure to bandgap bowing. Appl. Phys. Rev. 2 (2015), pp. 031304.
  • D. Mourad and G. Czycholl, Multiband tight-binding theory of disordered Ax B(1-x) C semiconductor quantum dots. Eur. Phys. J. B 78 (2010), pp. 497–507.
  • S. Li and G.W. Yang, Universal scaling of semiconductor nanowires bandgap. Appl. Phys. Lett. 95 (2009), pp. 073106.
  • P. Manca, A relation between the binding energy and the band-gap energy in semiconductors of diamond or zinc-blende structure. J. Phys. Chem. Solids 20 (1961), pp. 268–273.
  • L. Tichý, A. Tříska, H. Ticha, M. Frumar and J. Klikorka, The composition dependence of the gap in amorphous films of SixGe(1− x), SbxSe(1− x) and AsxTe(1− x) systems. Solid State Commun. 41 (1982), pp. 751–754.
  • K. Shimakawa, On the compositional dependence of the optical gap in amorphous semiconducting alloys. J. Non-Cryst. Solids 43 (1981), pp. 229–244.
  • J. Duffy, Trends in energy gaps of binary compounds: an approach based upon electron transfer parameters from optical spectroscopy. J. Phys. C Solid State Phys. 13 (1980), pp. 2979.
  • M. Yamaguchi, The relationship between optical gap and chemical composition in chalcogenide glasses. Philos. Mag. B 51 (1985), pp. 651–663.
  • L. Tichý, A. Tříska, Č Barta, H. Ticha and M. Frumar, Optical gaps from ‘mean’bond energy in Ge1− xSx and Ge k Sb m S n non-crystalline solids. Philos. Mag. B 46 (1982), pp. 365–376.
  • A.F. Ioffe and A.R. Regel, Progr. Semiconductors 4 (1960), pp. 237.
  • N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford University Press, 1979.
  • M.H. Cohen, H. Fritzsche and S. Ovshinsky, Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22 (1969), pp. 1065.
  • L. Tichy and H. Ticha, Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Solids 189 (1995), pp. 141–146.
  • S. Alharbi and K. Aly, Mechanical and electrical properties of As-Se glasses. Phys. B 571 (2019), pp. 285–290.
  • C. Jiang, X. Wang, Q. Zhu, Q. Nie, M. Zhu, P. Zhang, S. Dai, X. Shen, T. Xu, C. Cheng, F. Liao, Z. Liu and X. Zhang, Improvements on the optical properties of Ge–Sb–Se chalcogenide glasses with iodine incorporation. Infrared. Phys. Technol. 73 (2015), pp. 54–61.
  • J. Bicerano and S.R. Ovshinsky, Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties. J. Non-Cryst. Solids 74 (1985), pp. 75–84.
  • J. Bicerano and S.R. Ovshinsky, Chemical bond approach to glass structure. J. Non-Cryst. Solids 75 (1985), pp. 169–175.
  • J. Bicerano and S.R. Ovshinsky, Chemical bond approach to glass structure. J. Non-Cryst. Solids 75 (1985), pp. 169–175.
  • N. Chandel and N. Mehta, Analysis of physicochemical properties in covalent network chalcogenide glasses (ChGs): critical review of theoretical modeling of chemical bond approach. SN Applied Sciences 1 (2019), pp. 1–657.
  • L. Pauling, The Nature of the Chemical Bond, Cornell University Press, 1960.
  • J.C. Phillips, Bonds and Bands in Semiconductors, Academic Press, New York and London, 1973.
  • S.S. Fouad, A theoretical investigation of the correlation between the arbitrarily defined optical gap energy and the chemical bond in Te(46-x)As(32+x)Ge10 Si12 system. Vacuum 52 (1999), pp. 505–508.
  • A. Dahshan and H.H. Amer, Physical and optical properties of amorphous GexAs20S(80–x) thin films. Philos. Mag. 91 (2011), pp. 787–797.
  • A.H. Ammar, A.M. Farid and S.S. Fouad, Optical and other physical characteristics of amorphous Ge–Se–Ag alloys. Physica B 307 (2001), pp. 64–71.
  • A. Dahshan and K.A. Aly, Characterization of new quaternary chalcogenide As–Ge–Se–Sb thin films. Philos. Mag 88 (2008), pp. 361–372.
  • A. Dahshan and K.A. Aly, Characterization of new quaternary Ge20Se60Sb20−xAgx (0 ≤ x ≤ 20 at.%) glasses. J. Non-Cryst. Solids 408 (2015), pp. 62–65.
  • A. Dahshan, New amorphous As–Se–Sb–Cu thin films: theoretical characterization and evaluation of optical constants. Appl. Phys. A 123(210) (2017), pp. 1–6.
  • N. El-Kabnay, E.R. Shaaban, N. Afify and A.M. Abou-sehly, Optical and physical properties of different composition of InxSe1−x thin films. Phys. B 403 (2008), pp. 31–36.
  • A.S. Hassanien and I. Sharma, Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-xSbxSe50Te35 thin films: Influences of Sb upon some optical characterizations and physical parameters. J. Alloys Compd. 798 (2019), pp. 750–763.
  • K. Sedeek, E.A. Mahmoud, A. Said and A.M. Nassar, The effect of Te isoelectronic substitution on the electrical and optical properties of the Ge–S–Se amorphous chalcogenide system studied in thin films. Vacuum 51 (1998), pp. 329–333.
  • P. Kumar and R. Thangaraj, Glassy state and structure of Sn–Sb–Se chalcogenide alloy. J. Non-Cryst. Solids 352 (2006), pp. 2288–2291.
  • L. Jiang, A.G. Fitzgerald, M.J. Rose, K. Christova and V. Pamukchieva, X-ray photoelectron spectroscopy studies of thin GexSb40-xS60 chalcogenide films. J. Non-Cryst. Solids 297 (2002), pp. 13–17.
  • A. Dahshan and H.H. Amer, Physical and optical properties of amorphous GexAs20S80–xthin films. Philos. Mag 91 (2011), pp. 787–797.
  • E.M. Vinod, K. Ramesh and K.S. Sangunni, Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys. Sci. Rep. 5 (2015), pp. 8050.
  • L. Tichy, A. Triska, H. Ticha, M. Frumar and J. Klikorka, The composition dependence of the gap in amorphous films of SixGel -X, SbxSel -X and AsxTe1 - X systems. Solid State Commun. 41 (1982), pp. 751–754.
  • S. Bloom and T.K. Bergstresser, Band structure of a-Sn, InSb and CdTe including spin-orbit effects. Solid State Commun. 6 (1968), pp. 465–467.
  • V. Mitsa, R. Holomb, M. Veres, A. Marton, I. Rosola, I. Fekeshgazi and M. Koós, Non-linear optical properties and structure of wide band gap non-crystalline semiconductors. Phys Stat Solid c 8 (2011), pp. 2696–2700.
  • M. Munzar and L. Tichy, Far-infrared spectra and bonding arrangement in Ge–As–S–Se glasses. J. Phys. Chem. Solids 61 (2000), pp. 1647–1652.
  • A.M. Andriesh, M.S. Iovu, S.D. Shutov, Optical and photoelectrical properties of chalcogenide glasses, DOI 10.1016/S0080-8784(04)80006-1.
  • R. Abeera, K.H. Jung, N.-A.-A. Mohammad and S. Young-Han, A theoretical study on tuning band gaps of monolayer and bilayer SnS2 and SnSe2 under external stimuli. Curr. Appl. Phys. 19 (2019), pp. 709–714.
  • K. Bindu, C.S. Kartha, K.P. Vijayakumar, T. Abe and Y. Kashiwaba, Structural, optical and electrical properties of In2Se3 thin films formed by annealing chemically deposited Se and vacuum evaporated In stack layers. Appl. Surf. Sci. 191 (2002), pp. 138–147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.