114
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Electrochemical impedance spectroscopy study of AgI–Ag2O–MoO3 glasses: understanding the diffusion, relaxation, fragility and power law behaviour

&
Pages 400-419 | Received 03 Feb 2020, Accepted 20 Oct 2020, Published online: 16 Nov 2020

References

  • E.D. Zanotto and J.C. Mauro, The glassy state of matter: Its definition and ultimate fate, J. Non. Cryst. Solids. 471 (2017), pp. 490–495. doi:10.1016/j.jnoncrysol.2017.05.019.
  • T. Minami, H. Nambu and M. Tanaka, Formation of glasses with high ionic conductivity in the system AgI–Ag2O–MoO3. J. Am. Ceram. Soc 283 (1977), pp. 283–284. doi:10.1111/j.1151-2916.1977.tb14130.x.
  • T. Minami, T. Katsuda and M. Tanaka, Infrared spectra and structure of superionic conducting glasses in the system AgI–Ag2O–MoO3. J. Non. Cryst. Solids 29 (1978), pp. 389–395. doi:10.1016/0022-3093(78)90159-X.
  • S. Muto, T. Suemoto and M. Ishigame, Raman scattering of the superionic conducting glasses in the system AgI–Ag2O–MoO3. Solid State Ionics 35 (1989), pp. 307–310. doi:10.1016/0167-2738(89)90313-5.
  • J. Kawamura and M. Shimoji, Ionic conductivity and glass transition in the superionic conducting glasses (AgI)1–x(Ag2MoO4)x (x = 0.25, 0.30, 0.35) I. experimental results in the liquid and glassy states. J. Non. Cryst. Solids 88 (1986), pp. 281–294. doi:10.1016/S0022-3093(86)80031-X.
  • B. Vaidhyanathan, S. Asokan and K.J. Rao, High pressure studies on AgI–Ag2O–MoO3 glasses. Pramana 43 (1994), pp. 189–192. doi:10.1007/BF02847942.
  • M. Cutroni, M. Federico, A. Handavici, P. Mustarelli and C. Tomasi, Mechanical relaxation in (AgI)1-x(Ag2MoO4)x ionic glasses. Solid State Ionics 113–115 (1998), pp. 677–679. doi:10.1016/S0167-2738(98)00354-3.
  • N. Machida and H. Eckert, FT-IR, FT-Raman and 95Mo MAS–NMR studies on the structure of ionically conducting glasses in the system AgI–Ag2O–MoO3. Solid State Ionics 107 (1998), pp. 255–268. doi:10.1016/S0167-2738(98)00009-5.
  • F. Rocca, A. Kuzmin, P. Mustarelli, C. Tomasi and A. Magistris, XANES and EXAFS at Mo K-edge in (AgI)1-x(Ag2MoO4)x glasses and crystals. Solid State Ionics 121 (1999), pp. 189–192. doi:10.1016/S0167-2738(98)00546-3.
  • J. Swenson, R.L. McGreevy, L. Börjesson, J.D. Wicks and W.S. Howells, Intermediate-range structure of fast-ion-conducting AgI-doped molybdate and tungstate glasses. J. Phys. Condens. Matter 8 (1996), pp. 3545–3552. 10.1088/0953-8984/8/20/003.
  • S. Bhattacharya and A.T. Ghosh, Relaxation of silver ions in fast ion conducting molybdate glasses. Solid State Ionics 176 (2005), pp. 1243–1247. doi:10.1016/j.ssi.2005.03.002.
  • J. Kuwano, Silver ion conducting glasses and some applications. Solid State Ionics 40(41) (1990), pp. 696–699. doi:10.1016/0167-2738(90)90101-V.
  • B. Vaidhyanathan, K.J. Rao, S. Prakash, S. Murugavel and S. Asokan, Electrical switching in AgI based fast ion conducting glasses: Possibility for newer applications. J. Appl. Phys 78 (1995), pp. 1358–1360. doi:10.1063/1.360310.
  • T. Takahashi, Solid silver ion conductors. J. Appl. Electrochem 3 (1973), pp. 79–90. doi:10.1007/BF00613497.
  • V.V. Kharton, Solid State Electrochemistry I: Fundamentals, Materials and Their Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2009. doi:10.1002/9783527627868
  • A. Palui, A. Shaw and A. Ghosh, Dynamics of Silver ions in AgI doped Ag2O-SeO2-MoO3 mixed former glasses. Phys. Chem. Chem. Phys 18 (2016), pp. 25937–23945. doi:10.1039/C6CP05350E.
  • B. Tanujit, S. Asokan, Evidence of Negative Heat Capacity, Rigidity Percolation and Intermediate Phase in Fast Ion Conducting Conditional Glass Forming System, (Under Review). arXiv:1901.00742
  • T.Q. Nguyen and C. Breitkopf, Determination of diffusion coefficient using Impedence spectroscopy data. J. Electrochem. Soc 165 (2018), pp. E826–E831. https://iopscience.iop.org/article/10.1149/2.1151814jes.
  • K.J. Rao, C. Estournes, A. Levasseur, M.C. Shastry and M. Menetrier, Activation barriers for D.C. conductivity in ionic glasses: Classical calculations using the small-cluster approximation. Philos. Mag. B 67 (1993), pp. 389–406. doi:10.1080/13642819308220140.
  • K.J. Rao, C. Estournès, M. Ménétrier and A. Levasseur, A.C. conductivity studies of lithium thioborate glasses. Philos. Mag. B 70 (1994), pp. 809–816. doi:10.1080/01418639408240253.
  • B. Karmakar, K. Rademann, A. L. Stepanov, ed., Nanocomposites: synthesis, properties and applications, Elsevier, UK, 2016. https://www.elsevier.com/books/glass-nanocomposites/karmakar/978-0-323-39309-6
  • B. Tanujit, G.S. Varma and S. Asokan, Switching behavior of bulk, fast ion conducting, vitreous AgI–Ag2O–MoO3 solids with inert electrode. 12 (2019), pp. 7244–7252. doi:10.1111/jace.16641.
  • C. Austen Angell and L.-M. Martinez, A thermodynamic connection to thefragility of grass forming liquids. Nature 410 (2001), pp. 663–667. doi:10.1038/35070517.
  • D.I. Novita, P. Boolchand, M. Malki and M. Micoulaut, Elastic flexibility, fast-ion conduction, boson and floppy modes in AgPO3–AgI. J. Phys. Condens. Matter 21 (2009), pp. 205106-1–205106–17. doi:10.1088/0953-8984/21/20/205106.
  • B.A. Boukamp, A linear Kronig–Kramers Transform test for Immittance data Validation. J. Electrochem. Soc 142 (1995), pp. 1885). doi:10.1149/1.2044210.
  • J. Illig, M. Ender, T. Chrobak, J.P. Schmidt, D. Klotz and E. Ivers-Tiffée, Separation of charge transfer and contact resistance in LiFePO 4 -Cathodes by impedance Modeling. J. Electrochem. Soc 159 (2012), pp. A952–A960. doi:10.1149/2.030207jes.
  • D. Bérardan, S. Franger, A.K. Meena and N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4 (2016), pp. 9536–9541. doi:10.1039/c6ta03249d.
  • S.H. Liu, Fractal model for the ac response of a rough interface. Phys. Rev. Lett 55 (1985), pp. 529–532. 10.1103/PhysRevLett.55.529.
  • T. Kaplan, L.J. Gray and S.H. Liu, Self-affine fractal model for a metal-electrolyte interface. Phys. Rev. B 35 (1987), pp. 5379–5381. doi:10.1103/PhysRevB.35.5379.
  • V.D. Jovic, Determination of the correct value of Cdl from the impedance results fitted by the commercially available software. Gamry Instruments Inc (2003), pp. 9–11. doi:10.1109/ICTIS.2017.8047766.
  • M.D. Levi, Solid-state electrochemical kinetics of li-ion intercalation into Li1−xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J. Electrochem. Soc 146 (1999), pp. 1279). doi:10.1149/1.1391759.
  • B.E. Conway, Two dimensional and quasi-dimensional isotherms for Li intercalation and UPD process at surfaces. Electrochim. Acta 38 (1993), pp. 1249–1258. doi:10.1016/0013-4686(93)80055-5.
  • M.D. Levi, C. Wang and D. Aurbach, Two parallel diffusion paths model for interpretation of PITT and EIS responses from non-uniform intercalation electrodes. J. Electroanal. Chem 561 (2004), pp. 1–11. doi:10.1016/j.jelechem.2003.07.014.
  • B.R. Waser, R. Dittmann, G. Staikov and K. Szot, Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater 21 (2009), pp. 2632–2663. doi:10.1002/adma.200900375.
  • K.J. Rao, Structural Chemistry of Glasses, Elsevier Ltd., Kidlington, Oxford, 2002. https://www.elsevier.com/books/structural-chemistry-of-glasses/rao/978-0-08-043958-7
  • K. Funke, Jump relaxation in solid electrolyters. Prog. Solid State Chem 22 (1993), pp. 111–195. doi:10.1016/0079-6786(93)90002-9.
  • D. Zielniok, H. Eckert and C. Cramer, Direct correlation between nonrandom ion hopping and network structure in ion-conducting borophosphate glasses. Phys. Rev. Lett 100 (2008), pp. 1–4. doi:10.1103/PhysRevLett.100.035901.
  • I. Jlassi, N. Sdiri, H. Elhouichet and M. Ferid, Raman and impedance spectroscopy methods of P2O5–Li2O–Al2O3 glass system doped with MgO. J. Alloys Compd 645 (2015), pp. 125–130. doi:10.1016/j.jallcom.2015.05.025.
  • K. Funke and C. Cramer, Conductivity spectroscopy. Curr. Opin. Solid State Mater. Sci 2 (1997), pp. 483–490. doi:10.1016/S1359-0286(97)80094-0.
  • P. Lunkenheimer and A. Loidl, Response of disordered matter to electromagnetic fields. Phys. Rev. Lett 91 (2003), pp. 20–23. doi:10.1103/PhysRevLett.91.207601.
  • S. Ke, H. Huang, S. Yu and L. Zhou, Crossover from a nearly constant loss to a superlinear power-law behavior in Mn-doped Bi(Mg1/2Ti1/2)O3-PbTiO3 ferroelectrics. J. Appl. Phys 107 (2010), pp. 1–5. doi:10.1063/1.3386511.
  • C. Cramer, K. Funke, B. Roling, T. Saatkamo and D. Wilmer, Ionic and polaronic hopping in glass. Solid State Ionics 86–88 (1996), pp. 481–486. doi:10.1016/0167-2738(96)00178-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.