675
Views
6
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Bridge constant and atom between theoretical and experimental magnetism in Ni2MnSb Heusler alloy: DFT and EFT studies

, , &
Pages 501-516 | Received 21 May 2020, Accepted 26 Oct 2020, Published online: 16 Nov 2020

References

  • R.A. de Groot, F.M. Müller, P.G. van Engen and K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett 50 (1983), pp. 2024.
  • M. Zhang, Z. Liu, H. Hu, G. Liu, Y. Cui, J. Chen, G. Wu, X. Zhang and G. Xiao, Is Heusler compound Co2CrAl a half-metallic ferromagnet: electronic band structure, and transport properties. J. Mag. Magn. Mat 277 (2004), pp. 130–135.
  • I. Zutic, J. Fabian and S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76 (2004), pp. 323.
  • E. Şaşıoğlu, L.M. Sandratskii, P. Bruno and I. Galanakis, Exchange interactions and temperature dependence of magnetization in half-metallic Heusler alloys. Phys. Rev. B. 72 (2005), pp. 184415.
  • K. Inomata, N. Ikeda, N. Tezuka, R. Goto, S. Sugimoto, M. Wojcik and E. Jedryka, Highly spin-polarized materials and devices for spintronics. Sci. Tech. Adv. Mater. 9 (2008), pp. 014101.
  • S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova and D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294 (2001), pp. 1488–1495.
  • T. Nakatani, N. Hase, H.S. Goripati, Y.K. Takahashi, T. Furubayashi and K. Hono, Co-based Heusler alloys for CPP-GMR spin-valves with large magnetoresistive outputs. IEEE Trans. Magn. 48 (2012), pp. 1751–1757.
  • M. Moradi, N. Taheri and M. Rostami, Structural, electronic, magnetic and vibrational properties of half-Heusler NaZrZ (Z = P, As, Sb) compounds. Phys. Lett. A 382(41) (2018), pp. 3004–3011.
  • Y. Sakuraba, M. Ueda, Y. Miura, K. Sato, S. Bosu, K. Saito, M. Shirai, T.J. Konno and K. Takanashi, Extensive study of giant magneto resistance properties in half- metallic Co2(Fe, Mn)Si-based devices. Appl. Phys. Lett. 101 (2012), pp. 252408.
  • S.Y. Yu, Z.H. Liu, G.D. Liu, J.L. Chen, Z.X. Cao and G.H. Wu, Large magnetoresistance in single-crystalline Ni50Mn50-xInx alloys (x = 14–16) upon martensitic transformation. Appl. Phys. Lett. 89 (2006), pp. 162503.
  • C. Felser, G.H. Fecher and B. Balke, Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed 46 (2007), pp. 668–699.
  • J. Pierre, R.V. Skolozdra, J. Tobola, S. Kaprzyk, C. Hordequin, M.A. Kouacou, I. Karla, R. Currat and E.L. Berna, Properties on request in semi-Heusler phases. J. Alloys Compd. 262-263 (1997), pp. 101–107.
  • Y. Du, B.S.D.C.S. Varaprasad, Y.K. Takahashi, T. Furubayashi and K. Hono, (001) textured polycrystalline current-perpendicular-to-plane pseudo spin-valves using Co2Fe(Ga0.5Ge0.5) Heusler alloy. Appl. Phys. Lett. 103 (2013), pp. 202401.
  • E.G. Özdemir and Z. Merdan, Theoretical calculations on half-metallic results properties of FeZrX (X = P, As, Sb and Bi) half-Heusler compounds: density functional theory. Mater. Res. Express 6 (2019), pp. 086102.
  • E.G. Özdemir, E. Eser and Z. Merdan, Investigation of structural, half-metalli and elastic properties of a new full-Heusler compound-Ir2MnSi. Chin. J. Phys. 56 (2018), pp. 1551–1558.
  • X. Wang, H. Khachai, R. Khenata, H. Yuan, L. Wang, W. Wang, A. Bouhemadou, L. Hao, X. Dai, R. Guo, G. Liu and Z. Cheng, Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: a first-principles study. Sci. Rep. 7 (2017), pp. 16183.
  • A. Anjami, A. Boochani, S.M. Elahi and H. Akbari, Ab-initio study of mechanical, half-metallic and optical properties of Mn2ZrX (X = Ge, Si) compounds. Results Phys. 7 (2017), pp. 3522–3529.
  • H. Rozale, M. Khetir, A. Amar, A. Lakdja, A. Sayede and O. Benhelal, Ab-initio study of half-metallic ferromagnetism in the XCsSr (X = C, Si, Ge, and Sn) half-Heusler compounds. Superlattices Microstruct. 74 (2014), pp. 146–155.
  • Z. Merdan and E.G. Özdemir, The electronic and magnetic properties of new full-Heusler compounds: M2IrSi (M = Ti, Cr and Mn). Gazi Univ. J. Sci 31 (2018), pp. 940–952.
  • X. Wang, W. Zhao, Z. Cheng, X. Dai and R. Khenata, Electronic, magnetic, half-metallic and mechanical properties of a new quaternary Heusler compound ZrRhTiTl: insights from first principles studies. Solid State Commun. 269 (2018), pp. 125–130.
  • E.G. Özdemir and Z. Merdan, First-principles calculations on half-metal ferromagnetic results of VZrAs and VZrSb half-Heusler compounds and Al1-xMxAs (M = Co, Fe and x = 0.0625, 0.125, 0.25) diluted magnetic semiconductors. J. Alloys Compd. 807 (2019), pp. 151656.
  • E.G. Özdemir and Z. Merdan, First-principles predictions on structural, electronic, magnetic and elastic properties of Mn2IrAl Heusler alloy. Mater. Res. Express 6 (2019), pp. 036101.
  • E.G. Özdemir and Z. Merdan, Half-metal calculations of CoZrGe half-Heusler compound by using generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) methods. Mater. Res. Express 6 (2019), pp. 116124.
  • K. Nikolaev, P. Kolbo, T. Pokhil, X. Peng, Y. Chen, T. Ambrose and O. Mryasov, All-Heusler alloy current-perpendicular-to-plane giant magnetoresistance. Appl. Phys. Lett. 94 (2009), pp. 222501.
  • T. Seki, Y. Sakuraba, H. Arai, M. Ueda, R. Okura, H. Imamura and K. Takanashi, High power all-metal spin torque oscillator using full Heusler Co2(Fe, Mn)Si. Appl. Phys. Lett. 105 (2014), pp. 092406.
  • L. Bainsla, K.G. Suresh, A.K. Nigam, M. Manivel Raja, B.S.D.C. Varaprasad, Y.K. Takahashi and K. Hono, High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy. J. Appl. Phys. 116 (2014), pp. 203902.
  • N. Şarlı, F. Ak, E.G. Özdemir, B. Saatçi and Z. Merdan, Key role of central antimony in magnetization of Ni0.5Co1.5MnSb quaternary Heusler alloy revealed by comparison between theory and experiment. Phys. B 560 (2019), pp. 46–50.
  • Y.K. Takahashi, N. Hase, M. Kodzuka, A. Itoh, T. Koganezawa, T. Furubayashi, S. Li, B.S.D.C.S. Varaprasad, T. Ohkubo and K. Hono, Structure and magnetoresistance of current-perpendicular-to-plane pseudo spin valves using Co2Mn(Ga0.25Ge0.75) Heusler alloy. J. Appl. Phys. 113 (2013), pp. 223901.
  • L. Bainsla, A.I. Mallick, M. Manivel Raja, A.K. Nigam, B.S.D.C. Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh and K. Hono, Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy. Phys. Rev. B 91 (2015), pp. 104408.
  • Y. Sakuraba, S. Kokado, Y. Hirayama, T. Furubayashi, H. Sukegawa, S. Li, Y.K. Takahashi and K. Hono, Quantitative analysis of anisotropic magnetoresistance in Co2MnZ and Co2FeZ epitaxial thin films: a facile way to investigate spin-polarization in half-metallic Heusler compounds. Appl. Phys. Lett. 104 (2014), pp. 172407.
  • T. Kanomata, K. Shirakawa and T. Kaneko, Effect of hydrostatic pressure on the Curie temperature of the Heusler alloys Ni2MnZ(Z = Al, Ga, In, Sn and Sb). J. Magn. Magn. Mater 65 (1987), pp. 76–82.
  • Z. Diao, M. Chapline, Y. Zheng, C. Kaiser, A. Ghosh Roy, C.J. Chien, C. Shang, Y. Ding, C. Yang, D. Mauri, Q. Leng, M. Pakala, M. Oogane and Y. Ando, Half-metal CPP-GMR sensor for magnetic recording. J. Magn. Magn. Mater. 356 (2014), pp. 73–81.
  • B.S.D.C. Varaprasad, A. Srinivasan, Y.K. Takahashi, M. Hayashi, A. Rajanikanth and K. Hono, Spin polarization and gilbert damping of Co2Fe(GaxGe1-x) Heusler alloys. Acta Mater. 60 (2012), pp. 6257.
  • Y. Wu, J. Wang, J. Zhang and Y. Ma, Magneto-structural transition and magnetocaloric effect of Ni50-xTbxMn30Ga20 (x= 0–1) alloys. Intermetallics 89 (2017), pp. 100–104.
  • F. Cugini, L. Righi, L. van Eijck, E. Brück and M. Solzi, Cold working on the magnetocaloric effect of Ni50Mn34In16 Heusler alloy. J. Alloys Compd. 749 (2018), pp. 211–216.
  • C.L. Zhang, Y.G. Nie, H.F. Shi, E.J. Ye, Z.D. Han and D.H. Wang, Tuning magnetostructural transition and the associated giant magnetocaloric effect via thermal in MnCoGe-based alloys. J. Magn. Mang. Mater. 469 (2019), pp. 437–442.
  • J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore and O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11 (2012), pp. 620–626.
  • A. Planes, L. Manosa and M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter. 21 (2009), pp. 233201.
  • R. Zuberek, O.M. Chumak, A. Nabialek, M. Chojnacki, I. Radelytskyi and H. Szymczak, Magnetocaloric effect and magnetoelastic properties of NiMnGa and NiMnSn Heusler alloy thin films. J. Alloys Compd. 748 (2018), pp. 1–5.
  • G.H. Wu, C.H. Yu, L.Q. Meng, J.L. Chen, F.M. Yang, S.R. Qui and W.S. Zhan, Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Appl. Phys. Lett 75 (1999), pp. 2990–2992.
  • Y. Ezer, A. Sozinov, G. Kimmel, V. Etaleaniemi, N.I. Glavatskaya, A. D'Anci, V. Podgursky, V.K. Lindroos and K. Ullakko, Magnetic shape memory (MSM) effect in textured polycrystalline Ni2MnGa. Smart Struct. Mater. 3675 (1999).
  • A. Hirohata, H. Sukegawa, H. Yanagihara, I. Zutic, T. Seki, S. Mizukami and R. Swaminathan, Roadmap for emerging materials for spintronic device applications. IEEE Trans. Magn. 51 (2015), pp. 1–11.
  • R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439 (2006), pp. 957–960.
  • E.G. Özdemir and Z. Merdan, First principles predictions on half-metallic results of MnZrX (X = In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, O, S, Se, Te) half-Heusler compounds. J. Mag. Magn. Mater. 491 (2019), pp. 165567.
  • N. Xing, Y. Gong, W. Zhang, J. Dong and H. Li, First-principle prediction of half-metallic properties for the Heusler alloys V2YSb (Y = Cr, Mn, Fe, Co). Comput. Mater. Sci. 45 (2009), pp. 489–493.
  • T. Graf, C. Felser and S.S.P. Parkin, Simple rules for the understanding of Heusler compounds. Prog. Sol. State Chem. 39 (2011), pp. 1–50.
  • I. Galanakis, Heusler alloys chap.1, Springer International Publishing, Swizerland, 2016, pp. 3–4.
  • M.I. Khan, H. Arshad, M. Rizwan, S.S.A. Gillani, M. Zafar, S. Ahmed and M. Shakil, Investigation of structural, electronic, magnetic and mechanical properties of a new series of equiatomic quaternary Heusler alloys CoYCrZ (Z = Si, Ge, Ga, Al): a DFT study. J. Alloys Compd. 819 (2020), pp. 152964.
  • R. Honmura and T. Kaneyoshi, Contribution to the new type of effective-field theory of the Ising model. J. Phys. C: Sol. State Phys. 12 (1979), pp. 3979–3992.
  • T. Kaneyoshi, Differential operator technique in the Ising spin systems. Acta Phys. Pol. A 83 (1993), pp. 703–738.
  • F. Ak, E. Öz, and B. Saatçi, Structural and magnetic properties of Ni2-xCoxMnSb (x: 0.00, 0.25, 0.50 and 1.00) Heusler alloys: the relationship between Curie temperature and lattice parameter. Intermetallics 111 (2019), pp. 106491.
  • T. Kaneyoshi, Magnetizations of a nanoparticle described by the transverse Ising model. J. Magn. Magn. Mater. 321 (2009), pp. 3430–3435.
  • N. Şarlı, Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices. J. Magn. Magn. Mater. 374 (2015), pp. 238–244.
  • N. Şarlı, Generation of an external magnetic field with the spin orientation effect in a single layer Ising nanographene. Phys. E 83 (2016), pp. 22–29.
  • N. Şarlı, Artificial magnetism in a Carbon diamond nanolattice with the spin orientation effect. Diam. Relat. Mater. 64 (2016), pp. 103–109.
  • N. Şarlı, S. Akbudak, Y. Polat and M.R. Ellialtıoğlu, Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Phys. A 434 (2015), pp. 194–200.
  • N. Şarlı, G.D. Yıldız, Y.G. Yıldız and N.K. Yağcı, Magnetic properties of the Martensitic transformations with twinned and detwinned. Phys. B 553 (2019), pp. 161–168.
  • M. Keskin and N. Şarlı, Superconducting phase diagram of the yttrium, barium, and YBa-core in YBa2Cu3O7–δ by an ising model. J. Exp. Theor. Phys. 127 (2018), pp. 516–524.
  • N. Şarlı and M. Keskin, Coexistence of ferromagnetism and superconductivity in NiBi-binary alloy. Chin. J. Phys. 60 (2019), pp. 502–509.
  • N. Şarlı, Y. Dağdemir and B. Saatçi, Small thermal magnetization loop revealed by Bain Strain. J. Supercond. Novel Magn. 32 (2019), pp. 3933–3938.
  • O.E. Rhazouani, A. Benyoussef and A.E. Kenz, Phase diagram of the double perovskite Sr2CrReO6: effective-field theory. J. Magn. Magn. Mater. 377 (2015), pp. 319–324.
  • A. Duran, Surface superconductivity in Ni50Mn36Sn14 Heusler alloy. J Supercond. Nov. Magn. 31 (2018), pp. 4053–4062.
  • W. Jiang, H.Y. Guan, Z. Wang and A.B. Guo, Nanoparticle with a ferrimagnetic interlayer coupling in the presence of single-ion anisotropis. Phys. B 407 (2012), pp. 378–383.
  • E. Kantar, Superconductivity-like phenomena in anferrimagnetic endohedral fullerene with diluted magnetic surface. Solid State Commun. 263 (2017), pp. 31–37.
  • M. Abou Ghantous, E.A. Moujaes, J.L. Dunn and A. Khater, Cooperative Jahn-Teller effect in a 2D mesoscopic C60n− system with D5d symmetry adsorbed on buffer layers using Ising EFT model. Eur. Phys. J. B 85 (2012), pp. 178–191.
  • I.T. Padilha, J. Ricardo de Sousa, M.A. Neto, O.R. Salmon and J.R. Viana, Thermodynamics properties of copper-oxide superconductors described by an Ising frustrated model. Phys. A 392 (2013), pp. 4897–4904.
  • S. Bouhou, M.E. Hamri, I. Essaoudi, A. Ainane, R. Ahuja and F. Dujardin, Some hysteresis loop features of 2D magnetic spin-1 Ising nanoparticle: shape lattice and single-ion anisotropy effects. Chin. J. Phys. 55 (2017), pp. 2224–2235.
  • J.M. Wang, W. Jiang, C.L. Zhou, Z. Shi and C. Wu, Magnetic properties of a nanoribbon: an effective-field theory. Superlattices Microstruct. 102 (2017), pp. 359–372.
  • T. Kaneyoshi, Decorated Ising nanoparticles with high critical temperature. Phase Trans. 93 (2020), pp. 263–273.
  • T. Kaneyoshi, Reduced magnetization curves of Ising nanoparticles with high critical temperature. Phase Trans. 93 (2020), pp. 376–387.
  • T. Kaneyoshi, Ferrimagnetism and reentrant phenomena in a tetragonal Ising nanoparticle. Philos. Mag. 100 (2020), pp. 2262–2274.
  • J.P. Perdew, K. Burke and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phy. Rev. B 54 (1996), pp. 16533–16539.
  • J.P. Perdew, S. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Hvasnicka, J. Luitz and K. Schwarz, WIEN2k, An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, Techn. Univ, Wien, 2001, ISBN 3-9501031-1-2.
  • F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proceedings of the National Academy of Sciences, United States of America, 1944.
  • G.D. Yıldız, Intersection magnetization and temperature revealed by FCC-FCT phase transformation in the FePd binary alloy system. J. Supercond. Nov. Magn. 33 (2020), pp. 2051–2058.
  • S. Güldal and Y. Polat, Edge and surface antiferromagnetism in ABO3 perovskite-type nanoparticle within the effective field theory. Philos. Mag 100 (2020), pp. 642–657.
  • N. Şarlı and M. Keskin, Effect of the distance range between the YBa-core and CuO-shell on the superconducting properties in the YBCO by an Ising model. Chin. J. Phys 63 (2020), pp. 375–381.
  • Y.G. Yıldız, Exchange bias effect revealed by irreversible structural transformation between the HCP and FCC structures of Cobalt nanoparticles. Phase Trans. 93 (2020), pp. 429–437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.