175
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evolution of microstructural deformation mechanisms under equal-channel angular extrusion loading conditions: a molecular dynamics case study of single crystal titanium

&
Pages 435-449 | Received 02 Jul 2020, Accepted 19 Oct 2020, Published online: 20 Nov 2020

References

  • M. Furukawa, Z. Horita, M. Nemoto, and T. Langdon, Processing of metals by equal-channel angular pressing, J. Mater. Sci. 36 (2001), pp. 2835–2843.
  • I.J. Beyerlein and L.S. Tóth, Texture evolution in equal-channel angular extrusion, Prog. Mater. Sci. 54 (2009), pp. 427–510.
  • R. Lachhab, M. Rekik, H. Azzeddine, T. Baudin, A. Helbert, F. Brisset, and M. Khitouni, Study of the microstructure and texture heterogeneities of fe-48wt% ni alloy severely deformed by equal channel angular pressing, J. Mater. Sci. 54 (2019), pp. 4354–4365.
  • K. Neishi, Z. Horita, and T. Langdon, Grain refinement of pure nickel using equal-channel angular pressing, Mater. Sci. Engin. A 325 (2002), pp. 54–58.
  • M. Song, R. Zhu, D. Foley, C. Sun, Y. Chen, K. Hartwig, and X. Zhang, Enhancement of strength and ductility in ultrafine-grained t91 steel through thermomechanical treatments, J. Mater. Sci. 48 (2013), pp. 7360–7373.
  • Z. Zhang, I. Son, Y.T. Im, and J.K. Park, Finite element analysis of plastic deformation of cp-ti by multi-pass equal channel angular extrusion at medium hot-working temperature, Mater. Sci. Engin. A447 (2007), pp. 134–141.
  • S. Semiatin, D. Delo, and E. Shell, The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion, Acta. Mater. 48 (2000), pp. 1841–1851.
  • P. Prangnell, C. Harris, and S. Roberts, Finite element modelling of equal channel angular extrusion, Scr. Mater. 37 (1997), pp. 983–989.
  • J. Suh, H. Kim, and J. Chang, Finite element analysis of material flow in equal channel angular pressing, Scr. Mater. 44 (2001), p. 677.
  • A. Hasani, R. Lapovok, L. Tóth, and A. Molinari, Deformation field variations in equal channel angular extrusion due to back pressure, Scr. Mater. 58 (2008), p. 771.
  • R. Srinivasan, Computer simulation of the equichannel angular extrusion (ecae) process, Scr. Mater. 44 (2001), p. 91.
  • T. Aida, K. Matsuki, Z. Horita, and T. Langdon, Estimating the equivalent strain in equal-channel angular pressing, Scr. Mater. 44 (2001), pp. 575–579.
  • V. Segal, Equivalent and effective strains during severe plastic deformation (spd), Philos. Mag. Lett. 98 (2018), pp. 511–520.
  • S. Attarilar, M.T. Salehi, and F. Djavanroodi, Microhardness evolution of pure titanium deformed by equal channel angular extrusion, Metal. Res. Technol. 116 (2019), p. 408.
  • S. Suwas, B. Beausir, L. Tóth, J.J. Fundenberger, and G. Gottstein, Texture evolution in commercially pure titanium after warm equal channel angular extrusion, Acta. Mater.59 (2011), pp. 1121–1133.
  • D. Shin, I. Kim, J. Kim, Y. Kim, and S. Semiatin, Microstructure development during equal-channel angular pressing of titanium, Acta. Mater. 51 (2003), pp. 983–996.
  • N. Benmhenni, S. Bouvier, R. Brenner, T. Chauveau, and B. Bacroix, Micromechanical modelling of monotonic loading of cp α-ti: correlation between macroscopic and microscopic behaviour, Mater. Sci. Engin. A 573 (2013), pp. 222–233.
  • J. Gong and A.J. Wilkinson, Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams, Acta. Mater. 57 (2009), pp. 5693–5705.
  • S. Rawat and S. Chaturvedi, Strain-rate effect on plasticity and ω-phase transformation in single crystal titanium: A molecular dynamics study, Mech. Mater. 148 (2020), p. 103529.
  • S. Rawat and N. Mitra, Compression twinning and structural phase transformation of single crystal titanium under uniaxial compressive strain conditions: comparison of inter-atomic potentials, Comput. Mater. Sci. 126 (2017), pp. 228–237.
  • S. Rawat and N. Mitra, Evolution of tension twinning in single crystal ti under compressive uniaxial strain conditions, Comput. Mater. Sci. 141 (2018), pp. 302–312.
  • S. Rawat and N. Mitra, Molecular dynamics investigation of c-axis deformation of single crystal ti under uniaxial stress conditions: evolution of compression twinning and dislocations, Comput. Mater. Sci. 141 (2018), pp. 19–29.
  • S. Rawat and N. Mitra, Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: a molecular dynamics study, Comput. Mater. Sci. 172 (2020), p. 109325.
  • D. Errandonea, Y. Meng, M. Somayazulu, and D. Häusermann, Pressure-induced αω transition in titanium metal: a systematic study of the effects of uniaxial stress, Phys. B: Condens. Matter 355 (2005), pp. 116–125.
  • Y. Vohra, S. Sikka, S. Vaidya, and R. Chidambaram, Impurity effects and reaction kinetics of the pressure-induced αω transformation in ti, J. Phys. Chem. Solids 38 (1977), pp. 1293–1296.
  • E.K. Cerreta, J.P. Escobedo, P.A. Rigg, C.P. Trujillo, D.W. Brown, T.A. Sisneros, B. Clausen, M.F. Lopez, T. Lookman, C.A. Bronkhorst, and F.L. Addessio, The influence of phase and substructural evolution during dynamic loading on subsequent mechanical properties of zirconium, Acta. Mater. 61 (2013), pp. 7712–7719.
  • E. Cerreta, G. Gray III, A. Lawson, T. Mason, and C. Morris, The influence of oxygen content on the α to ω phase transformation and shock hardening of titanium, J. Appl. Phys. 100 (2006), p. 013530.
  • B. Morrow, R. Lebensohn, C. Trujillo, D. Martinez, F. Addessio, C. Bronkhorst, T. Lookman, and E. Cerreta, Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-hopkinson pressure bar, Int. J. Plasticity 82 (2016), pp. 225–240.
  • S. Sikka, Y. Vohra, and R. Chidambaram, Omega phase in materials, Prog. Mater. Sci. 27 (1982), pp. 245–310.
  • D. Trinkle, R. Hennig, S. Srinivasan, D. Hatch, M. Jones, H. Stokes, R. Albers, and J. Wilkins, New mechanism for the α to ω martensitic transformation in pure titanium, Phys. Rev. Lett. 91 (2003), p. 025701.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.
  • A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces, Model. Simulat. Mater. Sci. Engin. 20 (2012), p. 085007.
  • C. Barrett, M. Tschopp, and H. El Kadiri, Automated analysis of twins in hexagonal close-packed metals using molecular dynamics, Scr. Mater. 66 (2012), pp. 666–669.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with ovito–the open visualization tool, Model. Simulat. Mater. Sci. Engin. 18 (2009), p. 015012.
  • Y.M. Kim, B.J. Lee, and M. Baskes, Modified embedded-atom method interatomic potentials for ti and zr, Phys. Rev. B. 74 (2006), p. 014101.
  • S. Song and G. Gray III, Microscopic and crystallographic aspects of retained omega phase in shock-loaded zirconium and its formation mechanism, Philos. Mag. A 71 (1995), pp. 275–290.
  • M. Usikov and V. Zilbershtein, The orientation relationship between the α-and ω-phases of titanium and zirconium, Phys. Status Solidi A 19 (1973), pp. 53–58.
  • Y. Vohra, S. Sikka, E. Menon, and R. Krishnan, Direct evidence of intermediate state during alpha-omega transformation in ti v alloy, Acta Metal. 28 (1980), pp. 683–685.
  • S.J. Lainé and K.M. Knowles, {11− 24} deformation twinning in commercial purity titanium at room temperature, Philos. Mag. 95 (2015), pp. 2153–2166.
  • B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing, California, 1956.
  • F. Qingsong, B. Wenji, Y. Jingsu, R. He, S. Nicheng, L. Guowu, X. Ming, and M. Zhesheng, Titanium, ti, a new mineral species from luobusha, tibet, china, Acta Geol. Sin.-Engl. Ed. 87 (2013), pp. 1275–1280. Available at http://rruff.geo.arizona.edu/AMS/minerals/Titanium.
  • G. Gu, Y.K. Vohra, and K.E. Brister, Phase transformation in titanium induced by laser heating at high pressure, Scr. Metall. Mater. (U.S.) 31 (1994), pp. 167–171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.