94
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Impact of germanium doping on the mechanical strength of low oxygen concentration Czochralski silicon wafers

, &
Pages 517-532 | Received 27 Jun 2020, Accepted 15 Oct 2020, Published online: 25 Nov 2020

References

  • H.A.C. Tilmans, W. De Raedt and E. Beyne, MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’. J. Micromech. Microeng. 13 (2003), pp. S139–S163.
  • U.S. patent No. 8, 404 B2, S. Sadamitsu, M. Hourai, High-resistance silicon wafer and process, Sumitomo Mitsubishi Silicon Corporation,Tokyo, United States, 2003.
  • U.S. patent No. 7, 745 B2, S. Sadamitsu, N. Takase, H. Takao, K. Sueoka, M. Horai, High-resistance silicon wafer and process for producing the same, Sumco Corp, Japan, 2008.
  • A. Borghesi, B. Pivac, A. Sassella and A. Stella, Oxygen precipitation in silicon. J. Appl. Phys. 77 (1995), pp. 4169–4244.
  • K. Hoshikawa and X.M. Huang, Oxygen transportation during Czochralski silicon crystal growth. Mater. Sci. Eng. B. 72 (2000), pp. 73–79.
  • I. Yonenaga and K. Sumino, Influence of oxygen precipitation along dislocations on the strength of silicon crystals. J. Appl. Phys. 80 (1996), pp. 734–738.
  • S. Senkader, K. Jurkschat, P.R. Wilshaw and R.J. Falster, A study of oxygen dislocation interactions in CZ-Si. Mater. Sci. Eng. B. 73 (2000), pp. 111–115.
  • M. Akatsuka, K. Sueoka, H. Katahama, N. Morimoto and N. Adachi, Pinning effect on punched-out dislocations in silicon wafers investigated using indentation method. Jpn. J. Appl. Phys. Part 2 Lett. 36 (1997), pp. L1422–L1425.
  • S.M. Hu, Dislocation pinning effect of oxygen-atoms in silicon. Appl. Phys. Lett. 31 (1977), pp. 53–55.
  • G. Adegboyega and A. Poggi, On the intrinsic gettering of Cu in P-type silicon. J. Phys. III 1 (1991), pp. 1503–1508.
  • G. Adegboyega, O. Osasona and E. Susi, Intrinsic gettering of manganese impurity in silicon substrate. Phys. Status Solidi A. 161 (1997), pp. 231–235.
  • W. Gotz, G. Pensl and W. Zulehner, Observation of 5 additional thermal donor species TD12 to TD16 and regrowth of thermal donors at intial-stage of the new oxygen donor formation in Czochralski-grown silicon. Phys. Rev. B. 46 (1992), pp. 4312–4315.
  • P. Wagner and J. Hage, Thermal double donors in silicon. Phys. Status Solidi A. 49 (1989), pp. 123–138.
  • D. Aberg, B.G. Svensson, T. Hallberg and J.L. Lindstrom, Kinetic study of oxygen dimer and thermal donor formation in silicon. Phys. Rev. B. 58 (1998), pp. 12944–12951.
  • C.A. Londos, M.J. Binns, A.R. Brown, S.A. McQuaid and R.C. Newman, Effect of oxygen concentration on the kinetics of thermal donor formation in silicon at temperatures between 350 degrees-C and 500 degrees-C. Appl. Phys. Lett. 62 (1993), pp. 1525–1526.
  • E. Simoen, A. Mercha, C. Claey and N. Lukyanchikova, Low-frequency noise in silicon-on-insulator devices and technologies. Solid-State Electron. 51 (2007), pp. 16–37.
  • C.R. Alpass, J.D. Murphy, R.J. Falster and P.R. Wilshaw, Nitrogen diffusion and interaction with dislocations in single-crystal silicon. J. Appl. Phys. 105 (2009), pp. 013519-1-6.
  • A. Giannattasio, S. Senkader, R.J. Falster and P.R. Wilshaw, Dislocation locking by nitrogen impurities in FZ-silicon. Physica B. 340 (2003), pp. 996–1000.
  • A. Giannattasio, J.D. Murphy, S. Senkader, R.J. Falster and P.R. Wilshaw, Oxygen and nitrogen transport in silicon investigated by dislocation locking experiments. J. Electrochem. Soc. 152 (2005), pp. G460–G467.
  • M. Suezawa, K. Sumino, H. Harada and T. Abe, Nitrogen-Oxygen complexes as shallow donors in silicon-crystals. Jpn. J. Appl. Phys. Part 2 Lett. 25 (1986), pp. L859–L861.
  • J.L. Libbert, L. Mule’Stagno and M. Banan, Dissociation of nitrogen-oxygen complexes by rapid thermal anneal heat treatments. J. Appl. Phys. 92 (2002), pp. 1238–1241.
  • C. Jiahe, Y. Deren, M. Xiangyang, Z. Zhidan, T. Daxi, L. Liben, Q. Duanlin and G. Longfei, Influence of germanium doping on the mechanical strength of Czochralski silicon wafers. J. Appl. Phys. 103 (2008), pp. 123521-1-6.
  • I. Yonenaga, T. Taishi, X. Huang and K. Hoshikawa, Dynamic characteristics of dislocations in Ge-doped and (Ge+B) codoped silicon. J. Appl. Phys. 93 (2003), pp. 265–269.
  • I. Yonenaga, Dislocation–impurity interaction in Si. Mater. Sci. Semicond. Process. 6 (2003), pp. 355–358.
  • I. Yonenaga, Defects in Crystalline Silicon: Dislocations, in Handbook of Photovoltaic Silicon, Y. Deren ed., Springer, Berlin, 2019, pp. 1–48.
  • T. Taishi, X. Huang, I. Yonenaga and K. Hoshikawa, Dislocation behavior in heavily germanium-doped silicon crystal. Mater. Sci. Semicond. Process. 5 (2002), pp. 409–412.
  • T. Fukuda and A. Ohsawa, Mechanical strength of silicon crystals with oxygen and/or germanium impurities. Appl. Phys. Lett. 60 (1992), pp. 1184–1186.
  • S. Elhouar and B.B. Muvdi, Mechanics of Materials, CRC Press, Boca Raton, 2016.
  • S. Senkader, K. Jurkschat, D. Gambaro, R.J. Falster and P.R. Wilshaw, On the locking of dislocations by oxygen in silicon. Philos. Mag. A. 81 (2001), pp. 759–775.
  • J. Murphy, S. Senkader, R. Falster and P. Wilshaw, Oxygen transport in Czochralski silicon investigated by dislocation locking experiments. Mater. Sci. Eng. B. 134 (2006), pp. 176–184.
  • J. Murphy, A. Giannattasio, S. Senkader, R. Falster and P. Wilshaw, Nitrogen transport in float-zone and Czochralski silicon investigated by dislocation locking experiments. Phys. Status Solidi A. 202 (2005), pp. 926–930.
  • M. Imai and K. Sumino, Insitu X-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon-crystals. Philos. Mag. A. 47 (1983), pp. 599–621.
  • C.R. Alpass, J.D. Murphy, R.J. Falster and P.R. Wilshaw, Nitrogen in silicon: diffusion at 500–750°C and interaction with dislocations. Mater. Sci. Eng. B. 159–160 (2009), pp. 95–98.
  • D. Timerkaeva, D. Caliste and P. Pochet, Deciphering mechanisms of enhanced-retarded oxygen diffusion in doped Si. Appl. Phys. Lett. 103 (2013), pp. 251909-1-4.
  • I. Yonenaga, Nitrogen effects on generation and velocity of dislocations in Czochralski-grown silicon. J. Appl. Phys. 98 (2005), pp. 023517-1-6.
  • I. Yonenaga and K. Sumino, Effects of In impurity on the dynamic behavior of dislocations in GaAs. J. Appl. Phys. 62 (1987), pp. 1212–1219.
  • K. Sumino, I. Yonenaga, M. Imai and T. Abe, Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals. J. Appl. Phys. 54 (1983), pp. 5016–5020.
  • Y. Sun, T. Zhao, W. Lan, J. Zhao, Z. Ni, J. Zhao, X. Yu, X. Ma and D. Yang, Revisiting the effects of carbon-doping at 1017 cm−3 level on dislocation behavior of Czochralski silicon: from room temperature to elevated temperatures. J. Mater. Sci. Mater. Electron. 30 (2019), pp. 3114–3123.
  • M. Ogino, Y. Oana and M. Watanabe, The diffusion-coefficient of germanium in silicon. Phys. Status Solidi A. 72 (1982), pp. 535–541.
  • I. Yonenaga, Dislocation-impurity Interaction in Silicon, in Gettering and Defect Engineering in Semiconductor Technology, H. Richter and M. Kittler eds., Trans Tech Publications, Switzerland, 2004, pp. 423–432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.