144
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Displacement field due to glide and climb of rectilinear dislocations in gradient elasticity

Pages 533-554 | Received 02 Apr 2020, Accepted 19 Oct 2020, Published online: 25 Nov 2020

References

  • K. Danas and V.S. Deshpande, Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations, Model. Simulat. Mater. Sci. Engin. 21(4) (2013), p. 045008.
  • C. Ayas, L.C.P. Dautzenberg, M.G.D. Geers, and V.S. Deshpande, Climb-Enabled discrete dislocation plasticity analysis of the deformation of a particle reinforced composite, J. Appl. Mech. 82(7) (2015), p. 071007.
  • R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52(1) (1940), pp. 34–37.
  • F.R.N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc. 59(2) (1947), pp. 256–272.
  • L.M. Brown, The self-stress of dislocations and the shape of extended nodes, Philos. Magaz. 10(105) (1964), pp. 441–466.
  • J. Lothe, Dislocations in continuous elastic media, in Elastic strain fields and dislocation mobility, V.L. Indenbom and J. Lothe, eds., Elsevier, 1992, pp. 175–235.
  • A. Cemal Eringen, Nonlocal Continuum Field Theories, Springer, New York, NY, 2002, https://doi.org/10.1007/b97697.
  • R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids. Struct. 1(4) (1965), pp. 417–438.
  • R.D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal. 16(1) (1964), pp. 51–78.
  • R.D. Mindlin, On the equations of elastic materials with micro-structure, Int. J. Solids. Struct. 1(1) (1965), pp. 73–78.
  • C.Q. Ru and E.C. Aifantis, A simple approach to solve boundary-value problems in gradient elasticity, Acta Mech. 101 (1993), pp. 59–68.
  • M. Lazar and G.a. Maugin, Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity, Int. J. Eng. Sci. 43(13–14) (2005), pp. 1157–1184.
  • E.C. Aifantis, On the gradient approach – relation to eringen's nonlocal theory, Int. J. Eng. Sci. 49(12) (2011), pp. 1367–1377.
  • M.Yu. Gutkin and E.C. Aifantis, Screw dislocation in gradient elasticity, Scr. Mater.35(11) (1996), pp. 1353–1358.
  • M.Yu. Gutkin and E.C. Aifantis, Edge dislocation in gradient elasticity, Scr. Mater.36(1) (1997), pp. 129–135.
  • M.Yu. Gutkin and E.C. Aifantis, Dislocations and disclinations in gradient elasticity, Phys. Status Solidi (B) 214(2) (1999), pp. 245–284.
  • K.M. Davoudi, M.Yu. Gutkin, and H.M. Shodja, Analysis of stress field of a screw dislocation inside an embedded nanowire using strain gradient elasticity, Scr. Mater. 61(4) (2009), pp. 355–358.
  • K.M. Davoudi, M.Yu. Gutkin, and H.M. Shodja, A screw dislocation near a circular nano-inhomogeneity in gradient elasticity, Int. J. Solids Struct. 47(6) (2010), pp. 741–750.
  • K.M. Davoudi, H. Davoudi, and E.C. Aifantis, Nanomechanics of a screw dislocation in a functionally graded material using the theory of gradient elasticity, J. Mech. Behav. Mater. 21(5-6) (2013), pp. 187–194. https://doi.org/10.1515/jmbm-2013-0007.
  • K.M. Davoudi, Interaction between an edge dislocation near a circular void within the framework of the theory of strain gradient elasticity, J. Mech. Behav. Mater. 27(3-4) (2018), pp. 1–8.
  • K.M. Davoudi and E.C. Aifantis, Screw dislocation in a bi-medium within strain gradient elasticity revisited, J. Mech. Behav. Mater. 28(1) (2019), pp. 68–73.
  • M.R. Delfani and E. Tavakol, Uniformly moving screw dislocation in strain gradient elasticity, Euro. J. Mech. A/Solids 73(2018) (2019), pp. 349–355.
  • G. Po, M. Lazar, D. Seif, and N. Ghoniem, Singularity-free dislocation dynamics with strain gradient elasticity, J. Mech. Phys. Solids. 68 (2014), pp. 161–178.
  • M. Lazar and G.A. Maugin, Dislocations in gradient elasticity revisited, Proc. R. Soc. Math. Phys. Engin. Sci. 462(2075) (2006), pp. 3465–3480.
  • R. DeWit, Theory of disclinations: IV. straight disclinations, J Res. Natl Bur. Stand Sect. A Phys. Chem. 77A(5) (1973), pp. 607–658.
  • T. Mura, Micromechanics of Defects in Solids, 2nd ed., Kluwer Academic Publishers, Dordrecht/ Boston/ London, 1987.
  • F.R.N. Nabarro, Theory of Crystal Dislocations, Oxford University Press, London, 1967.
  • A.M. Kosevich, Crystal dislocations and the theory of elasticity. In Dislocations in Solid, Vol. 1, F. R. N. Nabarro, ed., North-Holland, 1979, pp. 33–141.
  • D. Hull and D.J. Bacon, Introduction to Dislocations, 5th ed., Elsevier, Oxford, 2011.
  • P.M. Anderson, J.P. Hirth, and J. Lothe, Theory of Dislocations, 3rd ed., Cambridge University Press, New York, NY, 2017.
  • K.M. Davoudi, L. Nicola, and J.J. Vlassak, Dislocation climb in two-dimensional discrete dislocation dynamics, J. Appl. Phys. 111(10) (2012), pp. 103522.
  • K.M. Davoudi, Temperature dependence of the yield strength of aluminum thin films: multiscale modeling approach, Scr. Mater. 131 (2017), pp. 63–66.
  • W.T. Read, Dislocations in Crystals, McGraw-Hill Book Company, New York/ Toronto/ London, 1953.
  • V.V. Bulatov and W. Cai, Computer Simulations of Dislocations, Oxford University Press, Oxford, 2006.
  • E. Van der Giessen and A. Needleman, Discrete dislocation plasticity : a simple planar model, Model. Simulat. Mater. Sci. Eng. 3 (1995), pp. 689–735.
  • C. Ayas, V.S. Deshpande, and M.G.D. Geers, Tensile response of passivated films with climb-assisted dislocation glide, J. Mech. Phys. Solids 60(9) (2012), pp. 1626–1643.
  • K.M. Davoudi, L. Nicola, and J.J. Vlassak, Bauschinger effect in thin metal films: discrete dislocation dynamics study, J. Appl. Phys. 115(1) (2014), p. 013507.
  • K.M. Davoudi and J.J. Vlassak, Dislocation evolution during plastic deformation: equations vs. discrete dislocation simulations, J. Appl. Phys. 123 (2018), p. 085302.
  • L.P. Kubin, Dislocations, Mesoscale Simulations and Plastic Flow, Oxford University Press, Oxford, 2013.
  • U.F. Kocks, Ali S. Argon, and Mike F. Ashby, Thermodynamics and Kinetics of Slip, Pergamon Press Ltd., 1975.
  • S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz, Interatomic potential for vanadium suitable for radiation damage simulations, J. Appl. Phys. 93(6) (2003), pp. 3328–3335.
  • K.M. Davoudi, Core energy and regularization parameters of non-singular continuum theories of dislocations using atomistic simulations. arXiv preprint arXiv:2011.04690 (2020).
  • A. Vretblad, Fourier Analysis and Its Applications, Springer-Verlag, New York, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.