228
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On friction stir welding of a medium manganese austenitic steel

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 576-597 | Received 05 Jun 2020, Accepted 06 Nov 2020, Published online: 03 Dec 2020

References

  • S. Keeler and M. Kimchi, Advanced High-Strength Steels Application Guidelines V5, WorldAutoSteel, 2015.
  • P.S. Kusakin and R.O. Kaibyshev, High-Mn twinning-induced plasticity steels: microstructure and mechanical properties. Rev. Adv. Mater. Sci 44 (2016), pp. 326–360.
  • B.C. De Cooman, Y. Estrin and S.K. Kim, Twinning-induced plasticity (TWIP) steels. Acta Mater. 142 (2018), pp. 283–362. doi:10.1016/j.actamat.2017.06.046.
  • O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci 15 (2011), pp. 141–168. doi:10.1016/j.cossms.2011.04.002.
  • V. Torganchuk, A. Belyakov and R. Kaibyshev, Effect of rolling temperature on microstructure and mechanical properties of 18%Mn TWIP/TRIP steels. Mater. Sci. Eng. A 708 (2017), pp. 110–117. doi:10.1016/j.msea.2017.09.122.
  • M. Ghasri-Khouzani and J.R. McDermid, Effect of carbon content on the mechanical properties and microstructural evolution of Fe–22Mn–C steels. Mater. Sci. Eng. A 621 (2015), pp. 118–127. doi:10.1016/j.msea.2014.10.042.
  • P. Kusakin, A. Belyakov, D.A. Molodov and R. Kaibyshev, On the effect of chemical composition on yield strength of TWIP steels. Mater. Sci. Eng. A 687 (2017), pp. 82–84. doi:10.1016/j.msea.2017.01.080.
  • J.-K. Kim, Y. Estrin and B.C. De Cooman, Constitutive modeling of the stacking fault energy-dependent deformation behavior of Fe-Mn-C-(Al) TWIP steels. Metall. Mater. Trans. A 49 (2018), pp. 5919–5924. doi:10.1007/s11661-018-4910-y.
  • L. Mújica Roncery, S. Weber, and W. Theisen, Welding of twinning-induced plasticity steels. Scr. Mater 66 (2012), pp. 997–1001. doi:10.1016/j.scriptamat.2011.11.041.
  • L. Mujica, S. Weber, H. Pinto, C. Thomy and F. Vollertsen, Microstructure and mechanical properties of laser-welded joints of TWIP and TRIP steels. Mater. Sci. Eng. A 527 (2010), pp. 2071–2078. doi:10.1016/j.msea.2009.11.050.
  • M. Rossini, P.R. Spena, L. Cortese, P. Matteis and D. Firrao, Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry. Mater. Sci. Eng. A 628 (2015), pp. 288–296. doi:10.1016/j.msea.2015.01.037.
  • C.B. Smith, W. Crusan, J.R. Hootman, J.F. Hinrichs, R.J. Heideman and J.S. Noruk, Friction stir welding in the automotive industry, Proc. TMS—AluminumAutomot. Join. Sess. (2001), pp. 175–185.
  • P. Liu, Q. Shi, W. Wang, X. Wang and Z. Zhang, Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materials. Mater. Lett 62 (2008), pp. 4106–4108. doi:10.1016/j.matlet.2008.06.004.
  • T. Chen, Process parameters study on FSW joint of dissimilar metals for aluminum-steel. J. Mater. Sci 44 (2009), pp. 2573–2580. doi:10.1007/s10853-009-3336-8.
  • L. Ping and Y. Tao, Friction stir welding automatic effect on building the microstructure and properties of high nickel steel. Bulg. Chem. Commun 49 (2017), pp. 239–244.
  • R.S. Mishra and Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. R Rep 50 (2005), pp. 1–78. doi:10.1016/j.mser.2005.07.001.
  • S.-J. Lee, Y. Sun and H. Fujii, Stacking-fault energy, mechanical twinning and strain hardening of Fe-18Mn-0.6C-(0, 1.5)Al twinning-induced plasticity steels during friction stir welding. Acta Mater. 148 (2018), pp. 235–248. doi:10.1016/j.actamat.2018.02.004.
  • Y.N. Zhang, X. Cao, S. Larose and P. Wanjara, Review of tools for friction stir welding and processing. Can. Metall. Q 51 (2012), pp. 250–261. doi:10.1179/1879139512Y.0000000015.
  • V. Torganchuk, I. Vysotskiy, S. Malopheyev, S. Mironov and R. Kaibyshev, Microstructure evolution and strengthening mechanisms in friction-stir welded TWIP steel. Mater. Sci. Eng. A 746 (2019), pp. 248–258. doi:10.1016/j.msea.2019.01.022.
  • H. Fujii, R. Ueji, Y. Morisada and H. Tanigawa, High strength and ductility of friction-stir-welded steel joints due to mechanically stabilized metastable austenite. Scr. Mater 70 (2014), pp. 39–42. doi:10.1016/j.scriptamat.2013.09.012.
  • M.H. Razmpoosh, A. Zarei-Hanzaki, S. Heshmati-Manesh, S.M. Fatemi-Varzaneh and A. Marandi, The grain structure and phase transformations of TWIP steel during friction stir processing. J. Mater. Eng. Perform 24 (2015), pp. 2826–2835. doi:10.1007/s11665-015-1557-3.
  • T. Miura, R. Ueji, H. Fujii, H. Komine and J. Yanagimoto, Stabilization of austenite in low carbon Cr–Mo steel by high speed deformation during friction stir welding. Mater. Des 90 (2016), pp. 915–921. doi:10.1016/j.matdes.2015.11.037.
  • V. Torganchuk, D.A. Molodov, A. Belyakov and R. Kaibyshev, Microstructure and mechanical properties of an ultrafine grained medium-Mn steel. Defect Diffus. Forum 385 (2018), pp. 308–313. doi:10.4028/www.scientific.net/DDF.385.308.
  • M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527 (2010), pp. 2738–2746. doi:10.1016/j.msea.2010.01.004.
  • The VIC-3D System. https://www.correlatedsolutions.com/vic-3d/
  • M. Tikhonova, V. Torganchuk, F. Brasche, D.A. Molodov, A. Belyakov and R. Kaibyshev, Effect of warm to hot rolling on microstructure, texture and mechanical properties of an advanced medium-Mn steel. Metall. Mater. Trans. A 50 (2019), pp. 4245–4256. doi:10.1007/s11661-019-05340-8.
  • S.G. Chowdhury, S. Datta, B.R. Kumar, P.K. De and R.N. Ghosh, Randomization of texture during recrystallization of austenite in a cold rolled metastable austenitic stainless steel. Mater. Sci. Eng. A 443 (2007), pp. 114–119. doi:10.1016/j.msea.2006.09.059.
  • L. Bracke, K. Verbeken, L. Kestens and J. Penning, Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater. 57 (2009), pp. 1512–1524. doi:10.1016/j.actamat.2008.11.036.
  • L. Bracke, K. Verbeken and L. Kestens, Texture generation and implications in TWIP steels. Scr. Mater 66 (2012), pp. 1007–1011. doi:10.1016/j.scriptamat.2012.02.048.
  • C. Haase, L.A. Barrales Mora, D.A. Molodov and G. Gottstein, Texture evolution of a cold-rolled Fe-28Mn-0.28C TWIP steel during recrystallization. Mater. Sci. Forum 753 (2013), pp. 213–216. doi:10.4028/www.scientific.net/MSF.753.213.
  • J. Jonas, C. Sellars and W.M. Tegart, Strength and structure under hot-working conditions. Int. Mater. Rev. 14 (1969), pp. 1–24. doi:10.1179/mtlr.1969.14.1.1.
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci 60 (2014), pp. 130–207. doi:10.1016/j.pmatsci.2013.09.002.
  • V. Randle, Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 47 (1999), pp. 4187–4196. doi:10.1016/S1359-6454(99)00277-3.
  • C. Haase, L.A. Barrales-Mora, D.A. Molodov and G. Gottstein, Tailoring the mechanical properties of a twinning-induced plasticity steel by retention of deformation twins during heat treatment. Metall. Mater.Trans. A 44 (2013), pp. 4445–4449. doi:10.1007/s11661-013-1935-0.
  • J. Mackenzie, Second paper on statistics associated with the random disorientation of cubes. Biometrika 45 (1958), pp. 229–240.
  • H. Miura, T. Sakai, R. Mogawa and J.J. Jonas, Nucleation of dynamic recrystallization and variant selection in copper bicrystals. Philos. Mag 87 (2007), pp. 4197–4209. doi:10.1080/14786430701532780.
  • S. Mahajan, Critique of mechanisms of formation of deformation, annealing and growth twins: face-centered cubic metals and alloys. Scripta Mater 68 (2013), pp. 95–99. doi:10.1016/j.scriptamat.2012.09.011.
  • F.C. Liu and T.W. Nelson, In-situ grain structure and texture evolution during friction stir welding of austenite stainless steel. Mater. Des 115 (2017), pp. 467–478. doi:10.1016/j.matdes.2016.11.066.
  • D. Shaysultanov, N. Stepanov, S. Malopheyev, I. Vysotskiy, V. Sanin, S. Mironov, R. Kaibyshev, G. Salishchev and S. Zherebtsov, Friction stir welding of a сarbon-doped CoCrFeNiMn high-entropy alloy. Mater. Charact 145 (2018), pp. 353–361. doi:10.1016/j.matchar.2018.08.063.
  • T. Sakai, Dynamic recrystallization microstructures under hot working conditions. J. Mater. Process. Tech 53 (1995), pp. 349–361. doi:10.1016/0924-0136(95)01992-N.
  • D. Alman and J. Hawk, The abrasive wear of sintered titanium matrix–ceramic particle reinforced composites. Wear 225–229 (1999), pp. 629–639. doi:10.1016/S0043-1648(99)00065-4.
  • H.S. Kim, On the rule of mixtures for the hardness of particle reinforced composites. Mater. Sci. Eng. A 289 (2000), pp. 30–33. doi:10.1016/S0921-5093(00)00909-6.
  • G. Garcés, M. Rodríguez, P. Pérez and P. Adeva, Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites. Mater. Sci. Eng. A 419 (2006), pp. 357–364. doi:10.1016/j.msea.2006.01.026.
  • H. Mughrabi, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31 (1983), pp. 1367–1379.
  • E. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64 (1951), pp. 747–753. doi:10.1088/0370-1301/64/9/303.
  • N.J. Petch, The cleavage strength of Polycrystals. J. Iron Steel Inst 173 (1953), pp. 25–28.
  • Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase and D.A. Molodov, Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel. Mater. Charact 112 (2016), pp. 180–187. doi:10.1016/j.matchar.2015.12.021.
  • P. Lan and J. Zhang, Tensile property and microstructure of Fe–22Mn–0.5C TWIP steel. Mater. Sci. Eng. A 707 (2017), pp. 373–382. doi:10.1016/j.msea.2017.09.061.
  • C.M. Young and O.D. Sherby, Subgrain formation and subgrain-boundary strengthening in iron based materials. J. Iron Steel Inst. (Lond.) 211 (1973), pp. 640–647.
  • B.P. Kashyap and K. Tangri, On the Hall-Petch relationship and substructural evolution in type 316L stainless steel. Acta Metall. Mater 43 (1995), pp. 3971–3981. doi:10.1016/0956-7151(95)00110-H.
  • A. Di Schino, I. Salvatori and J.M. Kenny, Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. J. Mater. Sci 37 (2002), pp. 4561–4565.
  • I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki and R. Kaibyshev, Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel. Mater. Sci. Eng. A 545 (2012), pp. 176–186. doi:10.1016/j.msea.2012.02.101.
  • S.V. Astafurov, G.G. Maier, E.V. Melnikov, V.A. Moskvina, M.Y. Panchenko and E.G. Astafurova, The strain-rate dependence of the Hall–Petch effect in two austenitic stainless steels with different stacking fault energies. Mater. Sci. Eng. A 756 (2019), pp. 365–372. doi:10.1016/j.msea.2019.04.076.
  • S. Kang, Y.-S. Jung, J.-H. Jun and Y.-K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe–18Mn–0.6C–1.5Al TWIP steel. Mater. Sci. Eng. A 527 (2010), pp. 745–751. doi:10.1016/j.msea.2009.08.048.
  • H. Gwon, J.-K. Kim, S. Shin, L. Cho and B.C. De Cooman, The effect of vanadium microalloying on the microstructure and the tensile behavior of TWIP steel. Mater. Sci. Eng. A 696 (2017), pp. 416–428. doi:10.1016/j.msea.2017.04.083.
  • A. Kalinenko, P. Kusakin, A. Belyakov, R. Kaibyshev and D.A. Molodov, Microstructure and mechanical properties of a high-MN twip steel subjected to cold rolling and annealing. Metals. (Basel) 7 (2017), pp. 571. doi:10.3390/met7120571.
  • D.A. Hughes and N. Hansen, Microstructure and strength of nickel at large strains. Acta Mater. 48 (2000), pp. 2985–3004. doi:10.1016/S1359-6454(00)00082-3.
  • D. Hull and D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, 1984.
  • Y. Estrin, L.S. Tóth, A. Molinari and Y. Bréchet, A dislocation-based model for all hardening stages in large strain deformation. Acta Mater. 46 (1998), pp. 5509–5522. doi:10.1016/S1359-6454(98)00196-7.
  • T.J. Harrell, T.D. Topping, H. Wen, T. Hu, J.M. Schoenung and E.J. Lavernia, Microstructure and strengthening mechanisms in an ultrafine grained Al–Mg–Sc alloy produced by powder metallurgy. Metall. Mater. Trans. A 45 (2014), pp. 6329–6343. doi:10.1007/s11661-014-2569-6.
  • Z. Yanushkevich, S.V. Dobatkin, A. Belyakov and R. Kaibyshev, Hall–Petch relationship for austenitic stainless steels processed by large strain warm rolling. Acta Mater. 136 (2017), pp. 39–48. doi:10.1016/j.actamat.2017.06.060.
  • H.J. Frost and M.F. Ashby, Deformation Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, UK, 1982.
  • B.P. Kashyap and K. Tangri, On the Hall–Petch relationship in type 316L stainless steel at room temperature. Scr. Metall. Mater. 24 (1990), pp. 1777–1782. doi:10.1016/0956-716X(90)90545-R.
  • N. Kamikawa, X. Huang, N. Tsuji and N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 57 (2009), pp. 4198–4208. doi:10.1016/j.actamat.2009.05.017.
  • A. Morozova and R. Kaibyshev, Grain refinement and strengthening of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing. Philos. Mag 97 (2017), pp. 2053–2076. doi:10.1080/14786435.2017.1324649.
  • N. Hansen, Hall–petch relation and boundary strengthening. Scripta Mater 51 (2004), pp. 801–806. doi:10.1016/j.scriptamat.2004.06.002.
  • M. Kato, Hall-Petch relationship and dislocation model for deformation of ultrafine-grained and nanocrystalline metals. Mater. Trans 55 (2014), pp. 19–24. doi:10.2320/matertrans.MA201310.
  • M.J. Starink, Dislocation versus grain boundary strengthening in SPD processed metals: Non-causal relation between grain size and strength of deformed polycrystals. Mater. Sci. Eng. A 705 (2017), pp. 42–45. doi:10.1016/j.msea.2017.08.069.
  • Z.Y. Ma, Friction stir processing: A review. Metall. Mater. Trans. A 39 (2008), pp. 642–658. doi:10.1007/s11661-007-9459-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.