201
Views
3
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Intensity characterisation of polarisation vortex formation and evolution in ferroelectric nanofilms

, &
Pages 673-688 | Received 15 Jul 2020, Accepted 16 Nov 2020, Published online: 09 Dec 2020

References

  • Y.L. Tang, Y.L. Zhu, X.L. Ma, A.Y. Borisevich, A.N. Morozovska, E.A. Eliseev, W.Y. Wang, Y.J. Wang, Y.B. Xu, Z.D. Zhang, and S.J. Pennycook, Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348 (2015), pp. 547–551.
  • X.B. Tian, X.Q. He, and J. Lu, Atomic scale study of the anti-vortex domain structure in polycrystalline ferroelectric. Philos. Mag. 98 (2018), pp. 118–138.
  • Y. Ivry, D.P. Chu, J.F. Scott, and C. Durkan, Flux closure vortexlike domain structures in ferroelectric thin films. Phys. Rev. Lett. 104 (2010), pp. 207602.
  • L.J. McGilly and J.M. Gregg, Polarization closure in PbZr((0.42))Ti((0.58))O(3) nanodots. Nano Lett. 11 (2011), pp. 4490–4495.
  • A.K. Yadav, C.T. Nelson, S.L. Hsu, Z. Hong, J.D. Clarkson, C.M. Schleputz, A.R. Damodaran, P. Shafer, E. Arenholz, L.R. Dedon, D. Chen, A. Vishwanath, A.M. Minor, L.Q. Chen, J.F. Scott, L.W. Martin, and R. Ramesh, Observation of polar vortices in oxide superlattices. Nature 530 (2016), pp. 198–201.
  • X.B. Tian, X.H. Yang, P. Wang, and D. Peng, Motion, collision and annihilation of polarization vortex pair in single crystalline BaTiO3 thin film. Appl. Phys. Lett. 103 (2013), pp. 242905.
  • X.B. Tian, X.H. Yang, and W.Z. Cao, Atomistic simulation of strain-induced domain evolution in a uniaxially compressed BaTiO3 single-crystal nanofilm. J. Electron. Mater. 42 (2013), pp. 2504–2509.
  • S.L. Hsu, M.R. McCarter, C. Dai, Z. Hong, L.Q. Chen, C.T. Nelson, L.W. Martin, and R. Ramesh, Emergence of the vortex state in confined ferroelectric heterostructures. Adv. Mater. 31 (2019), pp. 1901014.
  • P.P. Wu, X.Q. Ma, J.X. Zhang, and L.Q. Chen, Phase-field model of multiferroic composites: domain structures of ferroelectric particles embedded in a ferromagnetic matrix. Philos. Mag. 90 (2010), pp. 125–140.
  • Y. Zheng and W.J. Chen, Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics. Rep. Prog. Phys. 80 (2017), pp. 086501.
  • J.M. Gregg, Exotic domain states in ferroelectrics: searching for vortices and skyrmions. Ferroelectrics 433 (2012), pp. 74–87.
  • G. Catalan, J. Seidel, R. Ramesh, and J.F. Scott, Domain wall nanoelectronics. Rev. Mod. Phys. 84 (2012), pp. 119–156.
  • H. Zhao, P.P. Wu, L.F. Du, and H.L. Du, Effect of the nanopore on ferroelectric domain structures and switching properties. Comput. Mater. Sci. 148 (2018), pp. 216–223.
  • Y. Li, Y. Jin, X. Lu, J.-C. Yang, Y.-H. Chu, F. Huang, J. Zhu, and S.-W. Cheong, Rewritable ferroelectric vortex pairs in BiFeO3. Quantum Mater. 2 (2017), pp. 1-6.
  • I.I. Naumov, L. Bellaiche, and H. Fu, Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432 (2004), pp. 737–740.
  • B.J. Rodriguez, X.S. Gao, L.F. Liu, W. Lee, I.I. Naumov, A.M. Bratkovsky, D. Hesse, and M. Alexe, Vortex polarization states in nanoscale ferroelectric Arrays. Nano Lett. 9 (2009), pp. 1127–1131.
  • Z.W. Li, Y.J. Wang, G. Tian, P.L. Li, L.N. Zhao, F.Y. Zhang, J.X. Yao, H. Fan, X. Song, D.Y. Chen, Z. Fan, M.H. Qin, M. Zeng, Z. Zhang, X.B. Lu, S.J. Hu, C.H. Lei, Q.F. Zhu, J.Y. Li, X.S. Gao, and J.M. Liu, High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci. Adv. 3 (2017), pp. e1700919.
  • C.T. Nelson, B. Winchester, Y. Zhang, S.J. Kim, A. Melville, C. Adamo, C.M. Folkman, S.H. Baek, C.B. Eom, D.G. Schlom, L.Q. Chen, and X.Q. Pan, Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11 (2011), pp. 828–834.
  • R.G. McQuaid, L.J. McGilly, P. Sharma, A. Gruverman, and J.M. Gregg, Mesoscale flux-closure domain formation in single-crystal BaTiO3. Nat. Commun. 2 (2011), pp. 1-6.
  • R.K. Vasudevan, Y.C. Chen, H.H. Tai, N. Balke, P.P. Wu, S. Bhattacharya, L.Q. Chen, Y.H. Chu, I.N. Lin, S.V. Kalinin, and V. Nagarajan, Exploring topological defects in epitaxial BiFeO3 thin films. ACS Nano 5 (2011), pp. 879–887.
  • N. Balke, B. Winchester, W. Ren, Y.H. Chu, A.N. Morozovska, E.A. Eliseev, M. Huijben, R.K. Vasudevan, P. Maksymovych, J. Britson, S. Jesse, I. Kornev, R. Ramesh, L. Bellaiche, L.Q. Chen, and S.V. Kalinin, Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8 (2012), pp. 81–88.
  • L. Van Lich and V.-H. Dinh, Formation of polarization needle-like domain and its unusual switching in compositionally graded ferroelectric thin films: an improved phase field model. RSC Adv. 9 (2019), pp. 7575–7586.
  • Y. Su, On the dynamics of vortex structure in ferroelectric nanoparticles. Acta Mech. 224 (2013), pp. 1175–1184.
  • J. Wang and T.Y. Zhang, Effect of long-range elastic interactions on the toroidal moment of polarization in a ferroelectric nanoparticle. Appl. Phys. Lett. 88 (2006), pp. 182904.
  • W.J. Chen, Y. Zheng, B. Wang, D.C. Ma, and F.R. Ling, Vortex domain structures of an epitaxial ferroelectric nanodot and its temperature-misfit strain phase diagram. Phys. Chem. Chem. Phys. 15 (2013), pp. 7277–7285.
  • W.J. Chen, Y. Zheng, and B. Wang, Vortex domain structure in ferroelectric nanoplatelets and control of its transformation by mechanical load. Sci. Rep. 2 (2012), pp. 796.
  • W.J. Chen, Y. Zheng, and B. Wang, Pinning effects of dislocations on vortex domain structure in ferroelectric nanodots. Appl. Phys. Lett. 104 (2014), pp. 222912.
  • W.J. Chen, Y. Zheng, B. Wang, and J.Y. Liu, Coexistence of toroidal and polar domains in ferroelectric systems: a strategy for switching ferroelectric vortex. J. Appl. Phys. 115 (2014), pp. 214106.
  • J. Liu, Y. Ji, S. Yuan, L. Ding, W. Chen, and Y. Zheng, Controlling polar-toroidal multi-order states in twisted ferroelectric nanowires. Comput. Mater. 4 (2018), pp. 1-8.
  • C.M. Wu, W.J. Chen, D.C. Ma, C.H. Woo, and Y. Zheng, Effects of the surface charge screening and temperature on the vortex domain patterns of ferroelectric nanodots. J. Appl. Phys. 112 (2012), pp. 104108.
  • J.Y. Liu, W.J. Chen, B. Wang, and Y. Zheng, The formation and phase transition of vortex domain structures in ferroelectric nanodots: first-principles-based simulations. J. Appl. Phys. 114 (2013), pp. 044101.
  • L. Van Lich, T.Q. Bui, T. Shimada, T. Kitamura, T.-G. Nguyen, and V.-H. Dinh, Deterministic switching of polarization vortices in compositionally graded ferroelectrics using a mechanical field. Phys. Rev. Appl. 11 (2019), pp. 054001.
  • L. Van Lich, T. Shimada, J. Wang, V.-H. Dinh, T.Q. Bui, and T. Kitamura, Switching the chirality of a ferroelectric vortex in designed nanostructures by a homogeneous electric field. Phys. Rev. B 96 (2017), pp. 134119.
  • J. Wang, Switching mechanism of polarization vortex in single-crystal ferroelectric nanodots. Appl. Phys. Lett. 97 (2010), pp. 192901.
  • S. Yuan, W.J. Chen, L.L. Ma, Y. Ji, W.M. Xiong, J.Y. Liu, Y.L. Liu, B. Wang, and Y. Zheng, Defect-mediated vortex multiplication and annihilation in ferroelectrics and the feasibility of vortex switching by stress. Acta Mater. 148 (2018), pp. 330–343.
  • S. Prosandeev, I. Ponomareva, and L. Bellaiche, Electrocaloric effect in bulk and low-dimensional ferroelectrics from first principles. Phys. Rev B 78 (2008), pp. 052103.
  • B. Li, J.B. Wang, X.L. Zhong, F. Wang, Y.K. Zeng, and Y.C. Zhou, Giant electrocaloric effects in ferroelectric nanostructures with vortex domain structures. RSC Adv. 3 (2013), pp. 7928–7932.
  • Y.L. Li and L.Q. Chen, Temperature-strain phase diagram for BaTiO3 thin films. Appl. Phys. Lett. 88 (2006), pp. 072905.
  • W. Shu, J. Wang, and T.-Y. Zhang, Effect of grain boundary on the electromechanical response of ferroelectric polycrystals. J. Appl. Phys. 112 (2012), pp. 064108.
  • Y.L. Wang, A.K. Tagantsev, D. Damjanovic, N. Setter, V.K. Yarmarkin, and A.I. Sokolov, Anharmonicity of BaTiO3 single crystals. Phys. Rev. B 73 (2006), pp. 132103.
  • J. Hlinka and P. Márton, Phenomenological model of a 90° domain wall inBaTiO3-type ferroelectrics. Phys. Rev. B 74 (2006), pp. 104104.
  • I. Naumov and A.M. Bratkovsky, Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. Phys. Rev. Lett. 101 (2008), pp. 107601.
  • C.H. Woo and Y. Zheng, Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional. Appl. Phys. A 91 (2007), pp. 59–63.
  • S. Prosandeev, A. Malashevich, Z. Gui, L. Louis, R. Walter, I. Souza, and L. Bellaiche, Natural optical activity and its control by electric field in electrotoroidic systems. Phys. Rev. B 87 (2013), pp. 195111.
  • B. Winchester, N. Balke, X.X. Cheng, A.N. Morozovska, S. Kalinin, and L.Q. Chen, Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films. Appl. Phys. Lett. 107 (2015), pp. 052903.
  • D. Peng, X.H. Yang, and W.K. Jiang, Three-dimensional polarization vortex configuration evolution in compressed BaTiO3/SrTiO3 superlattice. J. Appl. Phys. 126 (2019), pp. 244101.
  • W.J. Chen and Y. Zheng, Vortex switching in ferroelectric nanodots and its feasibility by a homogeneous electric field: effects of substrate, dislocations and local clamping force. Acta Mater. 88 (2015), pp. 41–54.
  • J. Wang and M. Kamlah, Intrinsic switching of polarization vortex in ferroelectric nanotubes. Phys. Rev. B 80 (2009), pp. 012101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.