202
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of temperature on the evolution dynamics of voids in dynamic fracture of single crystal iron: a molecular dynamics study

&
Pages 657-672 | Received 20 Aug 2020, Accepted 09 Nov 2020, Published online: 27 Dec 2020

References

  • D. Curran, L. Seaman, and D. Shockey, Dynamic failure of solids, Phys. Rep. 147 (1987), pp. 253–388.
  • S.I. Ashitkov, P.S. Komarov, M.B. Agranat, G.I. Kanel, and V.E. Fortov, Achievement of ultimate values of the bulk and shear strengths of iron irradiated by femtosecond laser pulses, JETP. Lett. 98 (2013), pp. 384–388.
  • T. De Rességuier, E. Lescoute, and D. Loison, Influence of elevated temperature on the wave propagation and spallation in laser shock-loaded iron, Phys. Rev. B. 86 (2012), p. 214102.
  • G. Kanel, S. Razorenov, A. Bogatch, A. Utkin, V. Fortov, and D. Grady, Spall fracture properties of aluminum and magnesium at high temperatures, J. Appl. Phys. 79 (1996), pp. 8310–8317.
  • S. Razorenov, G. Kanel, K. Baumung, and H. Bluhm, Hugoniot elastic limit and spall strength of aluminum and copper single crystals over a wide range of strain rates and temperatures, AIP Conference Proceedings, American Institute of Physics, 2002, pp. 503–506, Atlanta, Georgia (USA).
  • E. Zaretsky, Shock response of iron between 143 and 1275 k, J. Appl. Phys. 106 (2009), p. 023510.
  • E. Zaretsky, Impact response of cobalt over the 300–1400 k temperature range, J. Appl. Phys. 108 (2010), p. 083525.
  • E. Zaretsky and G. Kanel, Yield stress, polymorphic transformation, and spall fracture of shock-loaded iron in various structural states and at various temperatures, J. Appl. Phys.117 (2015), p. 195901.
  • J. Belak, On the nucleation and growth of voids at high strain-rates, J. Comput. Aided Mater. Des.5 (1998), pp. 193–206.
  • E.N. Hahn, T.C. Germann, R. Ravelo, J.E. Hammerberg, and M.A. Meyers, On the ultimate tensile strength of tantalum, Acta. Mater. 126 (2017), pp. 313–328.
  • V. Ikkurthi, H. Hemani, R. Sugandhi, S. Rawat, P. Pahari, M. Warrier, and S. Chaturvedi, Multi-scale computational approach for modelling spallation at high strain rates in single-crystal materials, Procedia Eng. 173 (2017), pp. 1177–1184.
  • S. Rawat and S. Chaturvedi, Evolution of voids in single-crystal iron under uniaxial, biaxial and triaxial loading conditions, Philos. Mag. 100 (2020), pp. 1–23.
  • S. Rawat and P. Raole, Molecular dynamics investigation of void evolution dynamics in single crystal iron at extreme strain rates, Comput. Mater. Sci. 154 (2018), pp. 393–404.
  • S. Rawat, M. Warrier, S. Chaturvedi, and V. Chavan, Temperature sensitivity of void nucleation and growth parameters for single crystal copper: A molecular dynamics study, Model. Simul. Mater. Sci. Eng. 19 (2011), p. 025007.
  • S. Rawat, M. Warrier, S. Chaturvedi, and V. Ikkurthi, Multiscale simulations of damage of perfect crystal cu at high strain rates, Pramana 83 (2014), pp. 265–272.
  • T. Remington, E. Hahn, S. Zhao, R. Flanagan, J. Mertens, S. Sabbaghianrad, T.G. Langdon, C. Wehrenberg, B. Maddox, D. Swift, and B.A. Remington, Spall strength dependence on grain size and strain rate in tantalum, Acta. Mater. 158 (2018), pp. 313–329.
  • R.E. Rudd and J.F. Belak, Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: An atomistic simulation, Comput. Mater. Sci. 24 (2002), pp. 148–153.
  • E. Seppälä, J. Belak, and R. Rudd, Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study, Phys. Rev. B. 69 (2004), p. 134101.
  • E. Seppälä, J. Belak, and R. Rudd, Onset of void coalescence during dynamic fracture of ductile metals, Phys. Rev. Lett. 93 (2004), p. 245503.
  • J. Wang, S. Yip, S. Phillpot, and D. Wolf, Crystal instabilities at finite strain, Phys. Rev. Lett. 71 (1993), p. 4182.
  • V. Lubarda, M. Schneider, D. Kalantar, B. Remington, and M. Meyers, Void growth by dislocation emission, Acta. Mater. 52 (2004), pp. 1397–1408.
  • T. Antoun, L. Seaman, and D. Curran, Dynamic failure of materials, vol. 2–compilation of Russian spall data, Tech. Rep. No. DSWA-TR-96-77-V2, 1998.
  • G. Kanel, K. Baumung, J. Singer, and S. Razorenov, Dynamic strength of aluminum single crystals at melting, Appl. Phys. Lett. 76 (2000), pp. 3230–3232.
  • G. Kanel, S. Razorenov, K. Baumung, and J. Singer, Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point, J. Appl. Phys. 90 (2001), pp. 136–143.
  • G. Kanel, S. Razorenov, A. Utkin, V. Fortov, K. Baumung, H. Karow, D. Rusch, and V. Licht, Spall strength of molybdenum single crystals, J. Appl. Phys. 74 (1993), pp. 7162–7165.
  • S. Rawat, S. Chandra, V. Chavan, S. Sharma, M. Warrier, S. Chaturvedi, and R. Patel, Integrated experimental and computational studies of deformation of single crystal copper at high strain rates, J. Appl. Phys. 116 (2014), p. 213507.
  • S. Razorenov and G. Kanel, The strength of copper single crystals and the factors governing metal fracture in uniaxial dynamic stretching, Phys. Metals Metallogr. 74 (1992), pp. 526–530.
  • D. Tonks, D. Alexander, S. Sheffield, D. Robbins, A. Zurek, and W. Thissell, Spallation strength of single crystal and polycrystalline copper, J. Phys. IV 10 (2000), pp. Pr9-787.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.
  • A. Caro, J. Hetherly, A. Stukowski, M. Caro, E. Martinez, S. Srivilliputhur, L. Zepeda-Ruiz, and M. Nastasi, Properties of helium bubbles in fe and fecr alloys, J. Nuclear Mater. 418 (2011), pp. 261–268.
  • G. Ackland, M. Mendelev, D. Srolovitz, S. Han, and A. Barashev, Development of an interatomic potential for phosphorus impurities in α-iron, J. Phys. Condens. Matter 16 (2004), p. S2629. Available at https://www.ctcms.nist.gov/potentials/system/Fe-P/.
  • W. Murphy, A. Higginbotham, G. Kimminau, B. Barbrel, E. Bringa, J. Hawreliak, R. Kodama, M. Koenig, W. McBarron, M. Meyers, and B. Nagler, The strength of single crystal copper under uniaxial shock compression at 100 gpa, J. Phys. Condens. Matter 22 (2010), p. 065404.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with ovito – the open visualization tool, Model. Simul. Mater. Sci. Eng. 18 (2009), p. 015012.
  • H. Hemani, M. Warrier, N. Sakthivel, and S. Chaturvedi, Voxel based parallel post processor for void nucleation and growth analysis of atomistic simulations of material fracture, J. Mol. Graph. Model. 50 (2014), pp. 134–141.
  • S.V. Razorenov, G.I. Kanel, and V.E. Fortov, Iron at high negative pressures, J. Exp. Theor. Phys. Lett. 80 (2004), pp. 348–350.
  • P.N. Mayer and A.E. Mayer, Size distribution of pores in metal melts at non-equilibrium cavitation and further stretching, and similarity with the spall fracture of solids, Int. J. Heat Mass Transf. 127 (2018), pp. 643–657.
  • R. Rudd, E. Seppälä, L. Dupuy, and J. Belak, Void coalescence processes quantified through atomistic and multiscale simulation, J. Comput. Aided Mater. Des. 14 (2007), pp. 425–434.
  • L. Seaman, D.R. Curran, and D.A. Shockey, Computational models for ductile and brittle fracture, J. Appl. Phys. 47 (1976), pp. 4814–4826.
  • D. Dingley and K. Hale, Burgers vectors of dislocations in deformed iron and iron alloys, Proc. R. Soc. Lond. A Math. Phys. Sci. 295 (1966), pp. 55–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.