187
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Analysis of the initial oxidation layer of W-substituted alumina-forming heat-resistant steel

, , , , , , & show all
Pages 907-928 | Received 29 Jul 2019, Accepted 04 Jan 2021, Published online: 17 Jan 2021

References

  • I.G. Wright and R.B. Dooley, A review of the oxidation behavior of structural alloys in steam. Int. Mater. Rev. 55 (2010), pp. 129–167.
  • M.-H. Jang, J. Moon, J.-Y. Kang, H.-Y. Ha, B.G. Choi, T.-H. Lee, and C. Lee, Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels. Mater. Sci. Eng. A 647 (2015), pp. 163–169.
  • A. Aguero, M. Gutierrez, R. Muelas, and K. Spiradek-Hahn, Overview of steam oxidation behaviour of Al protective oxide precursor coatings on P92. Surf. Eng. 34 (2018), pp. 30–39.
  • Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, and B.A. Pint, Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels. Metall. Mater. Trans. A 42 (2011), pp. 922–931.
  • Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, and B.A. Pint, Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates. Metall. Mater. Trans. A 38 (2007), pp. 2737–2746.
  • Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, and E.A. Payzant, Creep-resistant, Al2O3-forming austenitic stainless steels. Science 316 (2007), pp. 433–436.
  • H. Asteman and M. Spiegel, A comparison of the oxidation behaviors of Al2O3 formers and Cr2O3 formers at 700°C – oxide solid solutions acting as a template for nucleation. Corros. Sci. 50 (2008), pp. 1734–1743.
  • G. Muralidharan, Y. Yamamoto, M.P. Brady, L.R. Walker, H.M. Meyer III, and D.N. Leonard, Development of cast alumina-forming austenitic stainless steels. JOM 68 (2016), pp. 2803–2810.
  • N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006.
  • M.P. Brady, Y. Yamamoto, M.L. Santella, and L.R. Walker, Composition, microstructure, and water vapor effects on internal/external oxidation of alumina-forming austenitic stainless steels. Oxid. Met. 72 (2009), pp. 311–333.
  • S.R.J. Saunders, M. Monteiro, and F. Rizzo, The oxidation behavior of metals and alloys at high temperatures in atmospheres containing water vapor: a review. Prog. Mater. Sci. 53 (2008), pp. 775–837.
  • Z. Yu, M. Chen, C. Shen, S. Zhu, and F. Wang, Oxidation of an austenitic stainless steel with or without alloyed aluminum in O2+ 10% H2O environment at 800°C. Corros. Sci. 121 (2017), pp. 105–115.
  • X. Xu, X. Zhang, G. Chen, and Z. Lu, Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels. Mater. Lett. 65 (2011), pp. 3285–3288.
  • M.P. Brady, Y. Yamamoto, M.L. Santella, and B.A. Pinit, Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels. Script. Mater. 57 (2007), pp. 1117–1120.
  • J.-Y. Kang, H.-Y. Ha, M.-H. Jang, J. Moon, D.-W. Suh, and T.-H. Lee, Underlying structure of bulky oxide nodule on alumina-forming austenitic stainless steel. Scripta Mater. 102 (2015), pp. 63–66.
  • J. Moon, T.-H. Lee, Y.-U. Heo, Y.-S. Han, J.-Y. Kang, H.-Y. Ha, and D.-W. Suh, Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel. Mater. Sci. Eng. A 645 (2015), pp. 72–81.
  • J. Moon, M.-H. Jang, J.-Y. Kang, and T.-H. Lee, The negative effect of Zr addition on the high temperature strength in alumina-forming austenitic stainless steels. Mater. Charact. 87 (2014), pp. 12–18.
  • M.-H. Jang, J.-Y. Kang, J.H. Jang, T.-H. Lee, and C. Lee, Improved creep strength of alumina-forming austenitic heat-resistant steels through W addition. Mater. Sci. Eng. A 696 (2017), pp. 70–79.
  • F. Abe, M. Taneike, and K. Sawada, Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int. J. Press. Vessel Pip. 84 (2007), pp. 3–12.
  • J. Hald, Microstructure and long-term creep properties of 9–12% Cr steels. Int. J. Press. Vessel Pip. 85 (2008), pp. 30–37.
  • F. Masuyama, History of power plants and progress in heat resistant steels. ISIJ Int. 41 (2001), pp. 612–625.
  • Q. Lu, W. Xu, and S. Van Der Zwaag, The computational design of W and co-containing creep-resistant steels with barely coarsening laves phase and M23C6 as the strengthening precipitates. Metall. Mater. Trans. A 45 (2014), pp. 6067–6074.
  • J.-Y. Kang, H.-Y. Ha, S.-D. Kim, J.Y. Park, M.-H. Jang, and T.-H. Lee, Effect of tungsten on the oxidation of alumina-forming austenitic stainless steel. Appl. Microsc. 49 (2019), pp. 13–22.
  • M.E. El-Dahshan, D.P. Whittle, and J. Stringer, The oxidation of nickel – tungsten alloys. Corros. Sci. 16 (1976), pp. 83–90.
  • S. Espevik, R.A. Rapp, P.L. Daniel, and J.P. Hirth, Oxidation of Ni-Cr-W ternary alloys. Oxid. Met. 14 (1980), pp. 85–108.
  • D.W. Yun, S.M. Seo, H.W. Jeong, I.S. Kim, and Y.S. Yoo, Modelling high temperature oxidation behaviour of Ni–Cr–W–Mo alloys with Bayesian neural network. J. Alloys Compd. 587 (2014), pp. 105–112.
  • D.W. Yun, H.S. Seo, J.H. Jun, J.M. Lee, D.H. Kim, and K.Y. Kim, Oxide modification by chi phase formed on oxide/metal interface of Fe-22Cr-0.5Mn ferritic stainless steel for SOFC interconnect. Int. J. Hydrog. Energy 36 (2011), pp. 5595–5603.
  • A. Safikhani and M. Aminfard, Effect of W and Ti addition on oxidation behavior and area-specific resistance of Fee22Cre0.5Mn ferritic stainless steel for SOFCs interconnect. Int. J. Hydrog. Energy 39 (2014), pp. 2286–2296.
  • H.-Y. Ha and H.-S. Kwon, Effects of pH levels on the surface charge and pitting corrosion resistance of Fe. J. Electrochem. Soc. 159 (2012), pp. C416–C421.
  • P. Tomaszewicz and G.R. Wallwork, The oxidation of high-purity iron-chromium-aluminum alloys at 800°C. Oxid. Met. 20 (1983), pp. 75–109.
  • T.M. Besmann, N.S. Kulkarni, and K.E. Spear, Thermochemical analysis and modeling of the Al2O3–Cr2O3, Cr2O3–SiO2, and Al2O3–Cr2O3–SiO2 systems relevant to refractories. J. Am. Ceram. Soc. 89 (2006), pp. 638–644.
  • C. Hubschmid, D. Landolt, and H.J. Mathieu, XPS and AES analysis of passive films on Fe-25Cr-X (X = Mo, V, Si and Nb) model alloys. Anal. Chem. 353 (1995), pp. 234–239.
  • M.Z. Yang, J.L. Luo, Q. Yang, L.J. Qiao, Z.Q. Qin, and P.R. Norton, Effects of hydrogen on semiconductivity of passive films and corrosion behavior of 310 stainless steel. J. Electrochem. Soc. 146 (1999), pp. 2107–2112.
  • H.-Y. Ha, M.-H. Jang, and T.-H. Lee, Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23 wt%Cr-based alloys. Electrochim. Acta 191 (2016), pp. 864–875.
  • H.-Y. Ha, T.-H. Lee, and S.-J. Kim, Role of nitrogen in the active–passive transition behavior of binary Fe-Cr alloy system. Electrochim. Acta 80 (2012), pp. 432–439.
  • N.E. Hakiki, M.F. Montemor, M.G.S. Ferreira, and M. da Cunha Belo, Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corros. Sci. 42 (2000), pp. 687–702.
  • N.E. Hakiki, Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel. Corros. Sci. 53 (2011), pp. 2688–2699.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.