469
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of stable stacking fault energy and crystal orientation on fracture behaviour of thin metallic single crystals

ORCID Icon & ORCID Icon
Pages 929-963 | Received 28 Jul 2020, Accepted 30 Dec 2020, Published online: 17 Jan 2021

References

  • J. Ast, M. Ghidelli, K. Durst, M. Göken, M. Sebastiani and A.M. Korsunsky, A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater. Des. 173 (2019), pp. 107762.
  • J.R. Greer and J.T.M.D. Hosson, Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56 (2011), pp. 654–724.
  • M.D. Uchic, P.A. Shade and D.M. Dimiduk, Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 30 (2009), pp. 361–386.
  • W.S. Choi, B.C.D. Cooman, S. Sandlöbes and D. Raabe, Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars. Acta Mater. 98 (2015), pp. 391–404.
  • G. Dehm, Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Prog. Mater. Sci. 54 (2009), pp. 664–688.
  • D.M. Dimiduk, M.D. Uchic and T.A. Parthasarathy, Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53 (2005), pp. 4065–4077.
  • C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider and E. Arzt, Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489 (2008), pp. 319–329.
  • D. Kiener, W. Grosinger, G. Dehm and R. Pippan, A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56 (2008), pp. 580–592.
  • D. Kiener, C. Motz and G. Dehm, Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng. A 505 (2009), pp. 79–87.
  • D. Kiener, C. Motz, T. Schöberl, M. Jenko and G. Dehm, Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8 (2006), pp. 1119–1125.
  • A. Kunz, S. Pathak and J.R. Greer, Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 59 (2011), pp. 4416–4424.
  • K.S. Ng and A.H.W. Ngan, Effects of trapping dislocations within small crystals on their deformation behavior. Acta Mater. 57 (2009), pp. 4902–4910.
  • D.M. Norfleet, D.M. Dimiduk, S.J. Polasik, M.D. Uchic and M.J. Mills, Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56 (2008), pp. 2988–3001.
  • S.H. Oh, M. Legros, D. Kiener and G. Dehm, In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat. Mater. 8 (2009), pp. 95–100.
  • Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren and A.M. Minor, Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7 (2008), pp. 115–119.
  • R. Su, D. Neffati, S. Xue, Q. Li, Z. Fan, Y. Liu, H. Wang, Y. Kulkarni and X. Zhang, Deformation mechanisms in FCC Co dominated by high-density stacking faults. Mater. Sci. Eng. A 736 (2018), pp. 12–21.
  • A. Stratulat, D.E.J. Armstrong and S.G. Roberts, Micro-mechanical measurement of fracture behaviour of individual grain boundaries in Ni alloy 600 exposed to a pressurized water reactor environment. Corros. Sci. 104 (2016), pp. 9–16.
  • C. Wu, C. Wei, and Y. Li, In situ mechanical characterization of the mixed-mode fracture strength of the Cu/Si interface for TSV structures. Micromachines. 10 (2019), pp. 86). doi:10.3390/mi10020086.
  • P. Andric and W.A. Curtin, New theory for Mode I crack-tip dislocation emission. J. Mech. Phys. Solids 106 (2017), pp. 315–337.
  • S.M. Ohr, An electron microscope study of crack tip deformation and its impact on the sislocation theory of fracture. Mater. Sci. Eng. 72 (1985), pp. 1–35.
  • J.R. Rice, Dislocation nucleation from a crack tip: An analysis based on Peierls concept. J. Mech. Phys. Solids 40 (1992), pp. 239–271.
  • P. Andric and W.A. Curtin, New theory for crack-tip twinning in fcc metals. J. Mech. Phys. Solids 113 (2018), pp. 144–161.
  • E.B. Tadmor and S. Hai, A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 51 (2003), pp. 765–793.
  • J. Knap and K. Sieradzk, Crack tip dislocation nucleation in FCC solids. Phys. Rev. Lett. 82 (1999), pp. 1700–1703.
  • S.J. Zhou, A.E. Carlsson and R. Thomson, Dislocation nucleation and crack stability: lattice green’s-function treatment of cracks in a model hexagonal lattice. Phys. Rev. B 47 (1993), pp. 7710–7719.
  • V.I. Yamakov, D.H. Warner, R.J. Zamora, E. Saether, W.A. Curtin and E.H. Glaessgen, Investigation of crack tip dislocation emission in aluminum using multiscale molecular dynamics simulation and continuum modeling. J. Mech. Phys. Solids 65 (2014), pp. 35–53.
  • P. Gumbsch and G.E. Beltz, On the continuum versus atomistic descriptions of dislocation nucleation and cleavage in nickel. Modell. Simul. Mater. Sci. Eng. 3 (1995), pp. 597–613.
  • Y. Juan, Y. Sun and E. Kaxiras, Ledge effects on dislocation emission from a crack tip: A first-principles study for silicon. Philos. Mag. Lett. 73 (1996), pp. 233–240.
  • G. Xu, A.S. Argon and M. Ortiz, Nucleation of dislocations from crack tips under mixed modes of loading: implications for brittle against ductile behaviour of crystals. Philos. Mag. A 72 (1995), pp. 415–451.
  • S.J. Zhou, A.E. Carlsson and R. Thomson, Crack blunting effects on dislocation emission from cracks. Phys. Rev. Lett. 72 (1994), pp. 852–856.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1995), pp. 1–19.
  • Y. Mishin, D. Farkas, M.J. Mehl and D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59 (1999), pp. 3393–3407.
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63 (2001), pp. 3076.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18 (2010), pp. 15012.
  • G.J. Ackland and A.P. Jones, Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B 73 (2006), pp. 4655.
  • P. Andric and W.A. Curtin, Atomistic modeling of fracture. Modell. Simul. Mater. Sci. Eng. 27 (2019), pp. 13001.
  • J. Zhang and S. Ghosh, Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material. J. Mech. Phys. Solids 61 (2013), pp. 1670–1690.
  • A. Neogi and N. Mitra, Evolution of dislocation mechanisms in single-crystal Cu under shock loading in different directions. Modell. Simul. Mater. Sci. Eng. 25 (2017), pp. 25013.
  • A. Neogi and N. Mitra, Shock induced deformation response of single crystal copper: effect of crystallographic orientation. Comput. Mater. Sci. 135 (2017), pp. 141–151.
  • S.-W. Kim, X. Li, H. Gao and S. Kumar, In situ observations of crack arrest and bridging by nanoscale twins in copper thin films. Acta Mater. 60 (2012), pp. 2959–2972.
  • E.W. Qin, L. Lu, N.R. Tao, J. Tan and K. Lu, Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles. Acta Mater. 57 (2009), pp. 6215–6225.
  • E. Qin, L. Lu, N. Tao and K. Lu, Enhanced fracture toughness of bulk nanocrystalline Cu with embedded nanoscale twins. Scr. Mater. 60 (2009), pp. 539–542.
  • A.N. Stroh, Dislocations and cracks in anisotropic elasticity. Philos. Mag. 3 (1958), pp. 625–646.
  • R. Singh and D.K. Mahajan, Role of stress triaxiality on ductile versus brittle fracture in pre-cracked FCC single crystals: An atomistic study. Modell. Simul. Mater. Sci. Eng. 27 (2019), pp. 55007.
  • S. Chakraborty, J. Zhang and S. Ghosh, Accelerated molecular dynamics simulations for characterizing plastic deformation in crystalline materials with cracks. Comput. Mater. Sci. 121 (2016), pp. 23–34.
  • G. Lu, N. Kioussis, V.V. Bulatov and E. Kaxiras, Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62 (2000), pp. 3099–3108.
  • M.A. Bhatia, M. Azarnoush, I. Adlakha, G. Lu and K.N. Solanki, Dislocation core properties of β -tin: A first-principles study. Modell. Simul. Mater. Sci. Eng. 25 (2017), pp. 25014.
  • S. Boffi, G. Caglioti, G. Rizzi and F. Rossitto, Glide systems and Peierls stresses in fcc and bcc metals from phonon energies. J. Appl. Phys. 44 (1973), pp. 603–607.
  • G. Liu, X. Cheng, J. Wang, K. Chen and Y. Shen, Peierls stress in face-centered-cubic metals predicted from an improved semi-discrete variation Peierls-Nabarro model. Scr. Mater. 120 (2016), pp. 94–97.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, Wiley, New York, 1992.
  • L. Yuan, P. Jing, R. Shivpuri, C. Xu, Z. Xu, D. Shan and B. Guo, Atomistic simulation of the stacking fault energy and grain shape on strain hardening behaviours of FCC nanocrystalline metals. Philos. Mag. 99 (2019), pp. 2818–2840.
  • D. Hull and D.J. Bacon, Introduction to Dislocations, Elsevier, 2011.
  • I. Gutierrez-Urrutia and D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22wt.% Mn–0.6wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater. 59 (2011), pp. 6449–6462.
  • V. Yamakov, D. Wolf, S.R. Phillpot and H. Gleiter, Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 50 (2002), pp. 5005–5020.
  • M.J. Buehler, A. Hartmaier, H. Gao, M. Duchaineau and F.F. Abraham, Atomic plasticity: Description and analysis of a one-billion atom simulation of ductile materials failure. Comput. Methods. Appl. Mech. Eng. 193 (2004), pp. 5257–5282.
  • A. Rohatgi, K.S. Vecchio and G.T. Gray, A metallographic and quantitative analysis of the influence of stacking fault energy on shock-hardening in Cu and Cu-Al alloys. Acta Mater. 49 (2001), pp. 427–438.
  • Y.F. Shen, L. LU, Q.H. Lu, Z.H. Jin and K. LU, Tensile properties of copper with nano-scale twins. Scr. Mater. 52 (2005), pp. 989–994.
  • R. Singh and D.K. Mahajan, On the transition of fracture toughness in metallic materials with thickness: An atomistic viewpoint. Comput. Mater. Sci. 171 (2020), pp. 109268.
  • V. Lakshmanan and C.M. Li, Edge dislocations emitted along inclined planes from a Mode I crack. Mater. Sci. Eng. A 104 (1988), pp. 95–104.
  • I.-H. Lin and R. Thomson, Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall. 34 (1986), pp. 187–206.
  • D.R. Adhika, M. Tanaka, T. Daio and K. Higashida, Crack tip shielding observed with high-resolution transmission electron microscopy. Microscopy. 64 (2015), pp. 335–340.
  • Y. Dou, H. Luo, Y. Jiang and X. Tang, Effects of alloying elements on the stacking fault energies of Ni58Cr32Fe10 alloys: A first-principle study. Metals. 9 (2019), pp. 1163.
  • L. Vitos, J.-O. Nilsson and B. Johansson, Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Mater. 54 (2006), pp. 3821–3826.
  • M. Muzyk, Z. Pakieła and K.J. Kurzydłowski, Generalized stacking fault energies of aluminum alloys–density functional theory calculations. Metals 8 (2018), pp. 823.
  • H. Hirakata, Y. Takeda, T. Kondo and K. Minoshima, Direct observation of the thickness effect on critical crack tip opening displacement in freestanding copper submicron-films by in situ electron microscopy fracture toughness testing. Int. J. Fract. 192 (2015), pp. 203–216.
  • E.I. Preiß, H. Lyu, J.P. Liebig, G. Richter, F. Gannott, P.A. Gruber, M. Göken, E. Bitzek and B. Merle, Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films. J. Mater. Res. 34 (2019), pp. 3483–3494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.