380
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Magnetic properties of the David star in the 2D-Kagome lattice

Pages 1019-1032 | Received 09 Jul 2020, Accepted 08 Jan 2021, Published online: 26 Jan 2021

References

  • Z. Shi and N. Lin, Porphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 131 (2009), pp. 5376–5377.
  • D.I. Gorbunov, I. Ishii, T. Nomura, M.S. Henriques, et al., Magnetic phase diagram and crystal-field effects in the Kagome-lattice antiferromagnet U3Ru4Al12. Phys. Rev. B 99 (2019), pp. 054413.
  • A.A. Zvyagin, New physics in frustrated magnets: spin ices, monopoles, etc. (Review article). Low Temp. Phys. 39(11) (2013), pp. 901–922.
  • Y.Y. Kiselev, S.A.P. arameswaran and D.P. Arovas, Order and disorder in SU(N) simplex solid antiferromagnets. J. Stat. Mech. 013105(2016), pp. 1–32.
  • G. Chen and P.A. Lee, Emergent orbitals in the cluster Mott insulator on a breathing kagome lattice. Phys. Rev. B 97 (2018), pp. 035124.
  • S. Dommange, M. Mambrini, B. Normand and F. Mila, Static impurities in the S=1/2 Kagome lattice: dimer freezing and mutual repulsion. Phys. Rev. B 68 (2003), pp. 224416.
  • O. Rojas, Geometrically frustrated Ising-Heisenberg spin model on expanded Kagomé lattice. J. Mag. Mag. Mater. 473 (2019), pp. 442–448.
  • S. Hayashida, H. Ishikawa, Y. Okamoto, T. Okubo, et al., Magnetic states elected by magnetic dipole interaction in the Kagome antiferromagnet NaBa2Mn3F11. Phys. Rev. B 97 (2018), pp. 054411.
  • N.S. Ananikian, L.N. Ananikian and H.A. Lazaryan, Magnetic properties and concurrence for fluid 3He on Kagome lattice. Phys. Atomic Nuc. 75 (2012), pp. 1250–1255.
  • T. Han, J.S. Helton, S. Chu, D.G. Nocera, et al., Fractionalized excitations in the spin-liquid state of a Kagome-lattice antiferromagnet. Nature 492 (2012), pp. 406–410.
  • E. Liu, Y. Sun, N. Kumar, L. Muechler, et al., Giant anomalous Hall effect in a ferromagnetic Kagome-lattices emimetal. Nat. Phys. 14 (2018), pp. 1125–1131.
  • H. Usui, M. Ochi, S. Kitamura, et al., Hidden Kagome-lattice picture and origin of high conductivity in delafos site PtCoO2. Phys. Rev. Mater. 3 (2019), pp. 045002.
  • P. Müller, A. Zander and J. Richter, Thermodynamics of the Kagome-lattice Heisenberg antiferromagnet with arbitrary spin S. Phys. Rev. B 98 (2018), pp. 024414.
  • K. Huhtinen, M. Tylutki, P. Kumar, et al., Spin-imbalanced pairing and Fermi surface deformation in flatbands. Phys. Rev. B 97 (2018), pp. 214503.
  • N. Bulut, W. Koshibae and S. Maekawa, Magnetic correlations in the hubbard model on triangular and Kagomé lattices. Phys. Rev. Lett. 95 (2005), pp. 037001.
  • T. Zhang, Y.Q. Hu, Z.W. Mo, et al., Cobalt(II) magnetic metal–organic framework with an effective Kagomé lattice, large surface area, and high spin-canted ordering temperature. ACS Appl. Mater. Interfaces 9 (2017), pp. 38181–38186.
  • L. Dang, S. Inglis and R.G. Melko, Quantum spin liquid in a spin-12XY model with four-site exchange on the Kagome lattice. Phys.Rev. B 84 (2011), pp. 132409.
  • R. Masrour, A. Jabar, A. Benyoussef and M. Hamedoun, Magnetic properties in Kagomé lattice with RKKY interaction: a Monte Carlo study. J. Magn. Mag. Mater. 401 (2016), pp. 695–699.
  • A.R. Way, K.P.W. Hall, I. Saika-Voivod and M.L. Plumer, Continuous degeneracy of the fcc Kagome lattice with magnetic dipolar interactions. Phys. Rev. B 98 (2018), pp. 214417.
  • A. Jabar, R. Masrour, M. Hamedoun and A. Benyoussef, Magnetic properties of Mn-doped armchair ZnO nanotubes: a Monte Carlo study. J. Philosophical Mag. Let. 97 (2017), pp. 486–493.
  • T. Sahdane, R. Masrour and A. Jabar, Ground state phase diagrams and ferroelectric hysteresis loops behaviour of dendrimer superlattice: a Monte Carlo study. J. Philosophical Mag. (2020) In Press, DOI:10.1080/14786435.2020.1797203.
  • R. Masrour and A. Jabar, Effect of magnetic, crystal field and exchange interactions on graphene system: a Monte Carlo study. J. Phase Trans. 90 (2017), pp. 415–422.
  • R. Masrour, A. Jabar, A. Benyoussef and M. Hamedoun, S = 5/2 Kagom'e Ising model with triquadratic interactions, crystal and magnetic field: a Monte Carlo study. Eur. Phys. J. Plus 130(213) (2015), pp. 1–7.
  • A. Jabar and R. Masrour, Ground states phase diagrams and magnetizations properties of ferrimagnetic model on decorated hexagonal nanolattice: Monte Carlo study. J. Clust. Sci. (2020) In Press, DOI: 10.1007/s10876-020-01851-2.
  • A. Jabar and R. Masrour, Magnetic properties of the triangular lattice with different clusters: a Monte Carlo study. J. Clust. Sci. 29 (2018), pp. 599–603.
  • A. Jabar and R. Masrour, An Ising spin-2 model on generalized recursive lattice: a Monte Carlo study. J. Supercon. Nov. Magn. 31 (2018), pp. 3589–3593.
  • A. Jabar and R. Masrour, Magnetic properties of simplest pure Husimi lattice: a Monte Carlo study. J. Supercon. Nov. Magn. 31 (2018), pp. 4185–4190.
  • A. Jabar, R. Masrour, A. Benyoussef and M. Hamedoun, Critical phenomena in Kagomé multilayer with RKKY-like interaction: a Monte Carlo study. Physica A 523 (2019), pp. 915–923.
  • A. Jabar and R. Masrour, Monte Carlo simulations of magnetic properties of Kekulene structure bilayers separate by a nonmagnetic with RKKY interactions. Chem. Phys. Lett. 700 (2018), pp. 130–137.
  • R. Masrour and A. Jabar, Magnetic properties of multilayered with alternating magnetic wires with the mixed spins-2 and 5/2 ferrimagnetic Ising model. Superlattices Microst. 109 (2017), pp. 641–647.
  • R. Masrour and A. Jabar, Ground state and magnetic phase transitions of the spin Lieb nanolattice: Monte Carlo simulations. Physica A 491 (2018), pp. 843–851.
  • Y.L. Xie, Y.L. Wang, Z.B. Yan and J.M. Liu, Magnetization plateaus of dipolar spinice on Kagome lattice. J. Appl. Phys. 115 (2014), pp. 17E122.
  • S. Iimura and Y. Imai, Thermal Hall conductivity in superconducting phase on Kagome lattice. J. Phys. Soc. Jpn 87 (2018), pp. 094715.
  • W.E.D. Nelissen, C. Ayas and C. Tekoğlu, 2D lattice material architectures foractuation. J. Mech. Phys.Sol 124 (2019), pp. 83–101.
  • J.M. Allred, S. Jia, M. Bremholm, et al., Ordered CoSn-type ternary phases in Co3Sn3-xGex. J. Alloy. Compd. 539 (2012), pp. 137–143.
  • S. Rayaprol, A. Hoser, K.K. Iyer, et al., Neutron diffraction study of a metallic Kagome lattice, Tb3Ru4Al12. J. Mag. Mag. Mater. 477 (2019), pp. 83–87.
  • M. Pasturela, N. Nasrib, T. Guizouarna, et al., Magnetic and magnetocaloric properties of the new R3Co4+xAl12-x (R: Tb→Er) withthe Gd3Ru4Al12 structure-type. Intermetallics 90 (2017), pp. 74–80.
  • M.P. Shores, E.A. Nytko, B.M. Bartlett, et al., A structurally perfect S=1/2 Kagome antiferromagnet. J. Am. Chem. Soc 127(39) (2005), pp. 13462–13463.
  • Z.F. Ding, Y.X. Yang, J. Zhang, et al., Possible gapless spin liquid in the rare-earth Kagome lattice magnet Tm3Sb3Zn2O14. Phys. Rev B 98 (2018), pp. 174404.
  • L. Sun, C. Zhou, J.H. Liang, et al., Magnetization reversal in kagome artificial spin ice studied by first-order reversal curves. Phys. Rev. B 96 (2017), pp. 144409.
  • T. Matsumura, Y. Ozono, S. Nakamura, et al., Helical ordering of spintrimers in a distorted Kagome lattice of Gd3Ru4Al12 studied by resonant X-ray diffraction. J. Phys. Soc. Jpn 88 (2019), pp. 023704.
  • S. Nakamura, N. Kabeya, M. Kobayashi, et al., Spin trimer formation in the metallic compound Gd3Ru4Al12 with a distorted Kagome lattice structure. Phys. Rev. B 98 (2018), pp. 054410.
  • T. Kaneyoshi, Differential operator technique in the ising spin systems. Acta Phys. Pol 83 (1993), pp. 703–738.
  • T. Kaneyoshi, Magnetizations of a transverse ising nanowire. J. Magn. Magn. Mater 322 (2010), pp. 3410–3415.
  • N. Şarlı, Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube. Physica B 411 (2013), pp. 12–25.
  • M. Abou Ghantous, E.A. Moujaes, J.L. Dunn and A. Khater, Cooperative Jahn-Teller effect in a 2D mesoscopic C60n− system with D5d symmetry adsorbed on buffer layers using Ising EFT model. Eur. Phys. J. B 85 (2012), pp. 178–191.
  • E. Kantar, Effective field study of the magnetism and superconductivity in idealised Ising-type X@Y60 endohedral fullerene system. Philos. Mag. 99 (2019), pp. 1669–1693.
  • S. Aouini, A. Mhirech, A. Alaoui-Ismaili and L. Bahmad, Phase diagrams and magnetic properties of a double fullerene structure with core/shell. Mod. Phys. Lett. B 59 (2019), pp. 346–356.
  • T. Kaneyoshi, Frustration in a graphene-like transverse Ising nanoisland. Physica B 561 (2019), pp. 141–146.
  • W. Jiang, Y.-Y. Yang and A.-B. Guo, Study on magnetic properties of a nano-graphene bilayer. Carbon. N. Y. 95 (2015), pp. 190–198.
  • N. Si, F. Zhang, W. Jiang and Y.-L. Zhang, Magnetic and thermodynamics proper-ties graphene monolayer with defects. Physica A 510 (2018), pp. 641–648.
  • J.P. Santos and F.C. Sá Barreto, An effective-field theory study of trilayer Ising nanostructure: thermodynamic and magnetic properties. J. Magn. Magn. Mater. 439 (2017), pp. 114–119.
  • N. Şarlı, Generation of an external magnetic field with the spin orientation effect in a single layer Ising nanographene. Physica E 83 (2016), pp. 22–29.
  • Y.G. Yıldız, Origin of the hardness in the monolayer nanographene. Phys. Lett. A 383 (2019), pp. 2333–2338.
  • N. Şarlı and M. Keskin, Coexistence of ferromagnetism and superconductivity in NiBi-binary alloy, Chinese J. Phys. 60 (2019), pp. 502–509.
  • A. Duran, Surface Superconductivity in Ni50Mn36Sn14 Heusler Alloy. J Supercond. Nov. Magn. 31 (2018), pp. 4053–4062.
  • N. Şarlı, F. Ak, E.G. Özdemir, B. Saatçi and Z. Merdan, Key role of central antimony in magnetization of Ni0.5Co1.5MnSb quaternary Heusler alloy revealed by comparison between theory and experiment. Physica B 560 (2019), pp. 46–50.
  • M. Keskin and N. Şarlı, Superconducting phase diagram of the yttrium, barium and YBa-core in YBCO by an Ising model. JEPT 127 (2018), pp. 516–524. RZETF. 154 (2018) 603-612.
  • N. Şarlı and M. Keskin, Effects of the copper and oxygen atoms of the CuO-plane on magnetic properties of the YBCO by using the effective-field theory. Chin. J. Phys. 59 (2019), pp. 256–264.
  • N. Şarlı, Superconductor core effect of the body centered orthorhombic nanolattice structure. J Supercond. Nov. Magn. 28 (2015), pp. 2355–2363.
  • I.T. Padilha, J. Ricardo de Sousa, M.A. Neto, O.R. Salmon and J.R. Viana, Thermodynamics properties of copper-oxide superconductors described by an Ising frustrated model. Phys. A 392 (2013), pp. 4897–4904.
  • N. Şarlı, G.D. Yıldız, Y.G. Yıldız and N.K. Yağcı, Magnetic properties of the martensitic transformations with twinned and detwinned. Physica B 553 (2019), pp. 161–168.
  • N. Şarlı, Y. Dağdemir and B. Saatçi, Small thermal magnetization loop revealed by Bain Strain. J Supercond. Nov. Magn. 32 (2019), pp. 3933–3938.
  • B. Saatçi, N. Şarlı, Y. Dağdemir, Y.G. Yıldız and H.Y. Ocak, Prediction of the Bain spin memory Materials (BSMM) revealed by Kaneyoshi theory. Phase Trans. 100 (2020), pp. 330–339.
  • T. Kaneyoshi, Decorated Ising nanoparticles with high critical temperature. Phase Trans. 93 (2020), pp. 263–273.
  • T. Kaneyoshi, Reduced magnetization curves of Ising nanoparticles with high critical temperature. Phase Trans. 93 (2020), pp. 376–387.
  • T. Kaneyoshi, Ferrimagnetism and reentrant phenomena in a tetragonal Ising nanoparticle. Philos. Mag. 100 (2020), pp. 2262–2274.
  • G.D. Yıldız, Intersection magnetization and temperature revealed by FCC-FCT phase transformation in the FePd binary Alloy system. J Supercond. Nov. Magn. 33 (2020), pp. 2051–2058.
  • Y.G. Yıldız, Exchange bias effect revealed by irreversible structural transformation between the HCP and FCC structures of Cobalt nanoparticles. Phase Trans 93 (2020), pp. 429–437.
  • J.P. Santos, R.M. Francisco and R.G.B. Mendes, Susceptibility and magnetic properties of a trilayer Ising nanostructure: an effective-field theory. Physica B 597 (2020), pp. 412419.
  • D.A. do Nascimento, M.A. Neto, J.R. Sousa and J.T.M. Pacobahyba, Thermodynamics properties of an anisotropic ising antiferromagnet in both external longitudinal and transverse fields. Physica A 392 (2013), pp. 5313–5321.
  • C. Kittel, Introduction to Solid State Physics. 7th ed., John Wiley & Sons, Inc., New York, 1996, pp. 333–378.
  • O.D.R. Salmon, M.A. Neto, F.D. Neto, D.A.M. Pariona and J.R. Tapia, Ferromagnetic phases due to competing short-and long-range interactions in the spin-5/2 and spin-2 Blume–Capel model. Phys. Lett. A 382 (2018), pp. 3325–3332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.