281
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effects of alloying elements on the generalised stacking fault energies of Pt: a first-principles study

, &
Pages 1033-1047 | Received 15 Sep 2020, Accepted 08 Jan 2021, Published online: 26 Jan 2021

References

  • J. Merker, B. Fischer, R. Völkl and D.F. Lupton, Investigations of new oxide dispersion hardened Platinum materials in laboratory tests and industrial applications. Mater. Sci. Forum 426–432 (2003), pp. 1979–1984.
  • A.S. Darling, Rhodium-Platinum alloys. Platin. Met. Rev. 5 (1961), pp. 97–100.
  • Y.T. Ning and Y.L. Wang, Influence of certain alloying elements on the creep activation energgy of Platinum. Acta Metall. Sin 15 (1979), pp. 548–556.
  • Y.T. Ning, High temperature strengthening of Platinum and Platinum-Rhodium alloys. Precious Met 5 (1984), pp. 39–45.
  • H.C. He, C.Y. Hu, J.X. Guo and F.S. Chen, Effects of rare earth elements on high temperature tensile strength and plasticity of Platinum. Precious Met 12 (1991), pp. 19–24.
  • W.B. Zhao, Z.Y. Tao, Z.Z. Ye and L. Song, Microstructure of Platinum alloy with microamount of Yittrium and Zirconium. Precious Met 13 (1992), pp. 17–21.
  • Q.X. Zhang, D.M. Zhang, S.C. Jia and W.L. Shong, Microstructure and properties of some dispersion strengthened Platinum alloys. Platin. Met. Rev 39 (1995), pp. 167–171.
  • X. Hu and Y.T. Ning, High-temperature mechanical properties of Pt-Pd-Rh alloys. Precious Met 19 (1998), pp. 1–7.
  • R. Völkl, D. Freund, A. Behrends, B. Fischer, J. Merker and D. Lupton, Platinum base alloys for high temperature space applications. Mater. Transp. Technol 1 (2000), pp. 257–260.
  • Z.M. Deng, J.L. Liu, X.Y. Lü, A. Shi, W.M. Guan and L. Chen, Properties and microstructure of Pt-Ir-Ru alloys. Precious Met 22 (2001), pp. 1–5.
  • Y.T. Ning, High temperature solid solution strengthening alloys based on Platinum group metals. Precious Met 30 (2009), pp. 55–60.
  • M. Wenderoth, R. Völkl, T. Yokokawa, Y. Yamabe-Mitarai and H. Harada, High temperature strength of Pt-base superalloys with different γ’ volume fractions. Scr. Mater 54 (2006), pp. 275–279.
  • M. Wenderoth, R. Völkl, S. Vorberg, Y. Yamabe-Mitarai, H. Harada and U. Glatzel, Microstructure, oxidation resistance and high-temperature strength of γ′ hardened Pt-base alloys. Intermetallics 15 (2007), pp. 539–549.
  • J.K. Odusote, L.A. Cornish and J.M. Papo, Assessment of the oxidation behavior of a Pt-based alloy for high temperature applications. J. Mater. Eng. Perform 22 (2013), pp. 3466–3475.
  • S.J. Zhao, G.M. Stocks and Y.W. Zhang, Stacking fault energies of face-centered cubic concentrated solid solution alloys. Acta Mater 134 (2017), pp. 334–345.
  • K. Kumar, R. Sankarasubramanian and U.V. Waghmare, Influence of dilute solute substitutions in Ni on its generalized stacking fault energies and ductility. Comput. Mater. Sci 150 (2018), pp. 424–431.
  • X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu and Z.F. Zhang, High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys. Appl. Phys. Lett 92 (2008), pp. 1–3.
  • W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu and S.N. Mathaudhu, Ultrastrong Mg alloy via nano-spaced stacking faults. Mater. Res. Lett 1 (2013), pp. 61–66.
  • V. Vítek, Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag 18 (1968), pp. 773–786.
  • B.L. Yin, Z.X. Wu and W.A. Curtin, Comprehensive first-principles study of stable stacking faults in hcp metals. Acta Mater 123 (2017), pp. 223–234.
  • X.Z. Wu, R. Wang, S.F. Wang and Q.Y. Wei, Ab initio calculations of generalized-stacking-fault energy surfaces and surface energies for FCC metals. Appl. Surf. Sci 256 (2010), pp. 6345–6349.
  • S.X. Shi, L.G. Zhu, H. Zhang and Z.M. Sun, Strength and ductility of niobium alloys with nonmetallic elements: A first-principles study. Mater. Lett 189 (2017), pp. 310–312.
  • J. Qian, C.Y. Wu, J.L. Fan and H.R. Gong, Effect of alloying elements on stacking fault energy and ductility of tungsten. J. Alloys Compd 737 (2018), pp. 372–376.
  • Y.C. Dou, H. Luo, J. Zhang and X.H. Tang, Generalized stacking fault energy of {10-11} < 11-23 >  slip system in Mg-based Binary alloys: A first principles study. Materials (Basel 12 (2019), pp. 1–7.
  • R.J. Pan, A.T. Tang, X.Y. Wu, L. Wu, W. He and T.T. Zheng, Effect of nonmetallic solutes on the ductility of zirconium from first-principles calculations. IOP Conf. Ser. Mater. Sci. Eng 479 (2019), pp. 1–6.
  • N.M. Rosengaard and H.L. Skriver, Calculated stacking-fault energies of elemental metals. Phys. Rev. B 47 (1993), pp. 12865–12873.
  • N. Bernstein and E.B. Tadmor, Tight-binding calculations of stacking energies and twinnability in fcc metals. Phys. Rev. B 69 (2004), pp. 1–10.
  • J. Cai, F. Wang, C. Lu and Y.Y. Wang, Structure and stacking-fault energy in metals Al, Pd, Pt, Ir, and Rh. Phys. Rev. B 69 (2004), pp. 1–4.
  • M.J. Mehl, D.A. Papaconstantopoulos, N. Kioussis and M. Herbranson, Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals. Phys. Rev. B 61 (2000), pp. 4894–4897.
  • A. Kumar, M.A. Kumar and I.J. Beyerlein, First-principles study of crystallographic slip modes in ω -Zr. Sci. Rep 8 (2017), pp. 8932.
  • D.D. Zhao, O.M. Løvvik, K. Marthinsen and Y.J. Li, Combined effect of Mg and vacancy on the generalized planar fault energy of Al. J. Alloys Compd 690 (2017), pp. 841–850.
  • B. Yin, Z. Wu and W.A. Curtin, First-principles calculations of stacking fault energies in Mg-Y, Mg-Al and Mg-Zn alloys and implications for < c + a > activity. Acta Mater 136 (2017), pp. 249–261.
  • Q. Dong, Z. Luo, H. Zhu, L.Y. Wang, T. Ying, Z.H. Jin, D.J. Li, W.J. Ding and X.Q. Zeng, Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects. J. Mater. Sci. Technol 34 (2018), pp. 1773–1780.
  • G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci 6 (1996), pp. 15–50.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865–3868.
  • P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50 (1994), pp. 17953–17979.
  • Z.H. Jin, S.T. Dunham, H. Gleiter, H. Hahn and P. Gumbsch, A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr. Mater 64 (2011), pp. 605–608.
  • H. Suzuki, Segregation of solute atoms to stacking faults. J. Phys. Soc. Japan 17 (1962), pp. 322–325.
  • T.W. Fan, L.T. Wei, B.Y. Tang, L.M. Peng and W.J. Ding, Effect of temperature-induced solute distribution on stacking fault energy in Mg-X(X = Li, Cu, Zn, Al, Y and Zr) solid solution: A first-principles study. Philos. Mag 94 (2014), pp. 1578–1587.
  • T.L. Achmad, W.X. Fu, H. Chen, C. Zhang and Z.G. Yang, Effect of solute segregation on the intrinsic stacking fault energy of Co-based binary alloys: A first-principles study. J. Alloys Compd 748 (2018), pp. 328–337.
  • H. Van Swygenhoven, P.M. Derlet and A.G. Frøseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater 3 (2004), pp. 399–403.
  • X.M. Wei, J.M. Zhang and K.W. Xu, Deformation mechanism analysis of fcc metals by GPF. Mater. Sci. Eng. A 486 (2008), pp. 540–544.
  • J.R. Rice, Dislocation nucleation from a crack tip : An analysis based on the Peierls concept. J. Mech. Phys. Solids 40 (1992), pp. 239–271.
  • L.H. Wang, X.D. Han, P. Liu, Y.H. Yue, Z. Zhang and E. Ma, In situ observation of dislocation behavior in nanometer grains. Phys. Rev. Lett 105 (2010), pp. 1–4.
  • X.Y. Shu, D.L. Kong, Y. Lu, H.B. Long, S.D. Sun, X.C. Sha, H. Zhou, Y.H. Chen, S.C. Mao and Y.N. Liu, Size effect on the deformation mechanisms of nanocrystalline Platinum thin films. Sci. Rep 7 (2017), pp. 1–11.
  • S.X. Shi, L.G. Zhu, H. Zhang, Z.M. Sun and R. Ahuja, Mapping the relationship among composition, stacking fault energy and ductility in Nb alloys: A first-principles study. Acta Mater 144 (2018), pp. 853–861.
  • N.E. Singh-Miller and N. Marzari, Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys. Rev. B 80 (2009), pp. 1–9.
  • J.Y. Li, M. Xie, Y.C. Yang, J.M. Zhang, Y.T. Chen, M.M. Liu, S.B. Wang, J.Q. Hu and P. Nin, Effect of Zr, Mo and Y adding on microstructure, mechanical and electrical properties of Au-Pd, Pt-Ir and Pd-Ru systems. Rare Met. Mater. Eng 42 (2013), pp. 2027–2033.
  • C. Wang, H.Y. Zhang, H.Y. Wang, G.J. Liu and Q.C. Jiang, Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations. Scr. Mater 69 (2013), pp. 445–448.
  • X.M. Zhang, J.F. Tang, L. Deng, H.Q. Deng, S.F. Xiao and W.Y. Hu, Effects of solute size on solid-solution hardening in Vanadium alloys: A first-principles calculation. Scr. Mater 100 (2015), pp. 106–109.
  • C.X. Zou, J.S. Li, W.Y. Wang, Y. Zhang, B. Tang, H. Wang, D. Lin, J. Wang, H.C. Kou and D.S. Xu, Revealing the local lattice strains and strengthening mechanisms of Ti alloys. Comput. Mater. Sci 152 (2018), pp. 169–177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.