405
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Clarifying the definition of ‘transonic’ screw dislocations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 997-1018 | Received 21 Oct 2020, Accepted 11 Dec 2020, Published online: 07 Feb 2021

References

  • R.J. Clifton, Dynamic plasticity, J. Appl. Mech. 50 (1983), pp. 941–952.
  • R.J. Clifton, Response of materials under dynamic loading, Int. J. Solids Struct. 37 (2000), pp. 105–113.
  • L.E. Murr, M.A. Meyers, C.S. Niou, Y.J. Chen, S. Pappu, and C. Kennedy, Shock-induced deformation twinning in tantalum, Acta Mater. 45 (1997), pp. 157–175.
  • R.A. Austin and D.L. McDowell, A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates, Int. J. Plast. 27 (2011), pp. 1–24.
  • D.J. Luscher, J.R. Mayeur, H.M. Mourad, A. Hunter, and M.A. Kenamond, Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions, Int. J. Plast.76 (2016), pp. 111–129.
  • B. Gurrutxaga-Lerma, The role of the mobility law of dislocations in the plastic response of shock loaded pure metals, Mod. Simul. Mater. Sci. Eng. 24 (2016), pp. 065006.
  • B. Gurrutxaga-Lerma, J. Verschueren, A.P. Sutton, and D. Dini, The mechanics and physics of high-speed dislocations: a critical review, Int. Mater. Rev. (2020) doi:10.1080/09506608.2020.1749781, in press.
  • D.N. Blaschke, A. Hunter, and D.L. Preston, Analytic model of the remobilization of pinned glide dislocations: including dislocation drag from phonon wind, Int. J. Plast. 131 (2020), pp. 102750.
  • D.L. Olmsted, L.G. Hector Jr., W.A. Curtin, and R.J. Clifton, Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys, Mod. Simul. Mater. Sci. Eng. 13 (2005), pp. 371–388.
  • J. Marian and A. Caro, Moving dislocations in disordered alloys: Connecting continuum and discrete models with atomistic simulations, Phys. Rev. B 74 (2006), pp. 024113.
  • N.P. Daphalapurkar, J.W. Wilkerson, T.W. Wright, and K.T. Ramesh, Kinetics of a fast moving twin boundary in nickel, Acta Mater. 68 (2014), pp. 82–92.
  • H. Tsuzuki, P.S. Branicio, and J.P. Rino, Accelerating dislocations to transonic and supersonic speeds in anisotropic metals, Appl. Phys. Lett. 92 (2008), pp. 191909.
  • H. Tsuzuki, P.S. Branicio, and J.P. Rino, Molecular dynamics simulation of fast dislocations in copper, Acta Mater. 57 (2009), pp. 1843–1855.
  • E. Oren, E. Yahel, and G. Makov, Dislocation kinematics: a molecular dynamics study in Cu, Mod. Simul. Mater. Sci. Eng. 25 (2017), pp. 025002.
  • C.J. Ruestes, E.M. Bringa, R.E. Rudd, B.A. Remington, T.P. Remington, and M.A. Meyers, Probing the character of ultra-fast dislocations, Sci. Rep. 5 (2015), pp. 16892.
  • P. Gumbsch and H. Gao, Dislocations faster than the speed of sound, Science 283 (1999), pp. 965–968.
  • Q. Li and S.Q. Shi, Dislocation jumping over the sound barrier in tungsten, Appl. Phys. Lett. 80 (2002), pp. 3069–3071.
  • Z. Jin, H. Gao, and P. Gumbsch, Energy radiation and limiting speeds of fast moving edge dislocations in tungsten, Phys. Rev. B 77 (2008), pp. 094303.
  • S. Peng, Y. Wei, Z. Jin, and W. Yang, Supersonic screw dislocations gliding at the shear wave speed, Phys. Rev. Lett. 122 (2019), pp. 045501.
  • V. Nosenko, S. Zhdanov, and G. Morfill, Supersonic dislocations observed in a plasma crystal, Phys. Rev. Lett. 99 (2007), pp. 025002.
  • J.A.Y. Vandersall and B.D. Wirth, Supersonic dislocation stability and nano-twin formation at high strain rate, Phil. Mag. 84 (2004), pp. 3755–3769.
  • Z.Q. Wang and I.J. Beyerlein, Stress orientation and relativistic effects on the separation of moving screw dislocations, Phys. Rev. B 77 (2008), pp. 184112.
  • D.N. Blaschke and B.A. Szajewski, Line tension of a dislocation moving through an anisotropic crystal, Phil. Mag. 98 (2018), pp. 2397–2424.
  • D.J. Bacon, D.M. Barnett, and R.O. Scattergood, Anisotropic continuum theory of lattice defects, Prog. Mater. Sci. 23 (1980), pp. 51–262.
  • J.P. Hirth and J. LotheTheory of Dislocations, 2nd ed., Wiley, New York, 1982.
  • X. Markenscoff, The transient motion of a nonuniformly moving dislocation, J. Elast. 10 (1980), pp. 193–201.
  • J.D. Eshelby, Uniformly moving dislocations, Proc. Phys. Soc. A 62 (1949), pp. 307–314.
  • J.R. Rumble, CRC Handbook of Chemistry and Physics, 100th ed., CRC Press, London, 2019. Available at http://hbcponline.com.
  • J.F. Thomas, Third-order elastic constants of aluminum, Phys. Rev. 175 (1968), pp. 955–962.Erratum-ibid. 181 (1969) 1370.
  • S.G. Epstein and O.N. Carlson, The elastic constants of nickel-copper alloy single crystals, Acta Metall.13 (1965), pp. 487–491.
  • J. Leese and A.E. Lord, Elastic stiffness coefficients of single-crystal iron from room temperature to 500 ∘C, J. Appl. Phys. 39 (1968), pp. 3986–3988.
  • D.I. Bolef, Elastic constants of single crystals of the bcc transition elements V, Nb, and Ta, J. Appl. Phys. 32 (1961), pp. 100–105.
  • N. Soga, Comparison of measured and predicted bulk moduli of tantalum and tungsten at high temperatures, J. Appl. Phys. 37 (1966), pp. 3416–3420.
  • R. Lowrie and A.M. Gonas, Single-crystal elastic properties of tungsten from 24 ∘ to 1800 ∘C, J. Appl. Phys. 38 (1967), pp. 4505–4509.
  • F. Maresca, D. Dragoni, G. Csányi, N. Marzari, and W.A. Curtin, Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian approximation potential, npj Comput. Mater. 4 (2018), pp. 268.
  • Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B 59 (1999), pp. 3393–3407.
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B63 (2001), pp. 224106.
  • R. Ravelo, T.C. Germann, O. Guerrero, Q. An, and B.L. Holian, Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations, Phys. Rev. B 88 (2013), pp. 134101.Erratum-ibid B89 (2014) 099902
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995), pp. 1–19.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Mod. Sim. Mater. Sci. Eng. 18 (2009), pp. 015012.
  • K. Dang, D. Bamney, K. Bootsita, L. Capolungo, and D.E. Spearot, Mobility of dislocations in aluminum: Faceting and asymmetry during nanoscale dislocation shear loop expansion, Acta Mater.168 (2019), pp. 426–435.
  • J. Verschueren, B. Gurrutxaga-Lerma, D.S. Balint, A.P. Sutton, and D. Dini, Instabilities of high speed dislocations, Phys. Rev. Lett. 121 (2018), pp. 145502.
  • Y. Wei and S. Peng, The stress-velocity relationship of twinning partial dislocations and the phonon-based physical interpretation, Sci. China – Phys. Mech. Astron. 60 (2017), pp. 114611.
  • W.R. Jian, M. Zhang, S. Xu, and I.J. Beyerlein, Atomistic simulations of dynamics of an edge dislocation and its interaction with a void in copper: a comparative study, Mod. Simul. Mater. Sci. Eng. 28 (2020), pp. 045004.
  • C. Domain and G. Monnet, Simulation of screw dislocation motion in iron by molecular dynamics simulations, Phys. Rev. Lett. 95 (2005), pp. 215506.
  • J. Marian, W. Cai, and V.V. Bulatov, Dynamic transitions from smooth to rough to twinning in dislocation motion, Nat. Mater. 3 (2004), pp. 158–163.
  • P.A. Gordon, T. Neeraj, Y. Li, and J. Li, Screw dislocation mobility in BCC metals: the role of the compact core on double-kink nucleation, Mod. Simul. Mater. Sci. Eng. 18 (2010), pp. 085008.
  • Yu. N. Osetsky and D.J. Bacon, An atomic-level model for studying the dynamics of edge dislocations in metals, Mod. Simul. Mater. Sci. Eng. 11 (2003), pp. 427–446.
  • W. Cai, V.V. Bulatob, J. Chang, J. Li, and S. Yip, Periodic image effects in dislocation modelling, Phil. Mag. 83 (2003), pp. 539–567.
  • B.A. Szajewski and W.A. Curtin, Analysis of spurious image forces in atomistic simulations of dislocations, Mod. Simul. Mater. Sci. Eng. 23 (2015), pp. 025008.
  • X. Markenscoff and S. Huang, Analysis for a screw dislocation accelerating through the shear-wave speed barrier, J. Mech. Phys. Solids 56 (2008), pp. 2225–2239.
  • Y.P. Pellegrini, Uniformly-moving non-singular dislocations with ellipsoidal core shape in anisotropic media, J. Micromech. Molec. Phys. 03 (2018), pp. 1840004.
  • D.N. Blaschke, Velocity dependent dislocation drag from phonon wind and crystal geometry, J. Phys. Chem. Solids 124 (2019), pp. 24–35.
  • D.N. Blaschke, E. Mottola, and D.L. Preston, Dislocation drag from phonon wind in an isotropic crystal at large velocities, Phil. Mag. 100 (2020), pp. 571–600.
  • V.I. Alshits, The phonon-dislocation interaction and its role in dislocation dragging and thermal resistivity, in Elastic Strain Fields and Dislocation Mobility, V.L. Indenbom and J. Lothe, eds., Modern Problems in Condensed Matter Sciences, Vol. 31, Elsevier, 1992, pp. 625–697.
  • S. Kim, H. Kim, K. Kang, and S.Y. Kim, Relativistic effect inducing drag on fast-moving dislocation in discrete system, Int. J. Plast. 126 (2020), pp. 102629.
  • S. Kim, H. Kim, and S.Y. Kim, Configurational force on a dynamic dislocation with localized oscillation, Int. J. Plast. 136 (2021), pp. 102814.
  • A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov, Enabling strain hardening simulations with dislocation dynamics, Mod. Simul. Mater. Sci. Eng. 15 (2007), pp. 553–595.
  • N. Bertin, M.V. Upadhyay, C. Pradalier, and L. Capolungo, A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics, Mod. Sim. Mater. Sci. Eng. 23 (2015), pp. 065009.
  • B. Devincre and L. Kubin, Mesoscopic simulations of dislocations and plasticity, Mater. Sci. Eng. A234-236 (1997), pp. 8–14.
  • N.M. Ghoniem, S.H. Tong, and L.Z. Sun, Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B 61 (2000), pp. 913–927.
  • H.M. Zbib, M. Rhee, and J.P. Hirth, On plastic deformation and the dynamics of 3D dislocations, Int. J. Mech. Sci. 40 (1998), pp. 113–127.
  • Y. Cui, G. Po, Y.P. Pellegrini, M. Lazar, and N. Ghoniem, Computational 3-dimensional dislocation elastodynamics, J. Mech. Phys. Solids 126 (2019), pp. 20–51.
  • M.R. Gilbert, S. Queyreau, and J. Marian, Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics, Phys. Rev. B 84 (2011), pp. 174103.
  • J. Cho, J.F. Molinari, and G. Anciaux, Mobility law of dislocations with several character angles and temperatures in FCC aluminum, Int. J. Plast. 90 (2017), pp. 66–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.