232
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Properties and electronic structure of Al/Mo2C interfaces: insights from first principle simulation

, , &
Pages 1061-1080 | Received 30 Aug 2020, Accepted 19 Nov 2020, Published online: 10 Feb 2021

References

  • Y.S. Jhong, H.T. Tseng, and S.J. Lin, Diamond/Ag-Ti composites with high thermal conductivity and excellent thermal cycling performance fabricated by pressureless sintering, J. Alloys Compd. 801 (2019), pp. 589–595.
  • M.T. Lee, C.Y. Chung, S.C. Yen, C.L. Lu, and S.J. Lin, High thermal conductive diamond/Ag-Ti composites fabricated by low-cost cold pressing and vacuum liquid sintering techniques, Diamond Relat. Mater. 44 (2014), pp. 95–99.
  • L. Lei, L. Bolzoni, and F. Yang, High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite, Carbon. 168 (2020), pp. 553–563.
  • Y. Wu, Z. Tang, Y. Wang, P. Cheng, H. Wang, and G. Ding, High thermal conductive Cu-diamond composites synthesized by electrodeposition and the critical effects of additives on void-free composites, Ceram. Int. 45 (2019), pp. 19658–19668.
  • L. Zhang, Q. Wei, J. An, L. Ma, K. Zhou, W. Ye, Z. Yu, X. Gan, C. Lin, and J. Luo, Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management, Chem. Eng. J. 380 (2020), pp. 122551.
  • L. Ning, L. Wang, J. Dai, X. Wang, J. Wang, M.J. Kim, and H. Zhang, Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles, Diamond Relat. Mater. 100 (2019), pp. 107565.
  • G. Chang, F. Sun, J. Duan, Z. Che, X. Wang, J. Wang, M.J. Kim, and H. Zhang, Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond, Acta Mater. 160 (2018), pp. 235–246.
  • G. Chen, W. Yang, L. Xin, P. Wang, S. Liu, J. Qiao, F. Hu, Q. Zhang, and G. Wu, Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method, J. Alloys Compd. 735 (2018), pp. 777–786.
  • C. Monachon, G. Schusteritsch, E. Kaxiras, and L. Weber, Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces, J. Appl. Phys. 115 (2014), pp. 12509.
  • L. Wang, J. Li, G. Bai, N. Li, X. Wang, H. Zhang, J. Wang, and M.J. Kim, Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration, J. Alloys Compd. 781 (2019), pp. 800–809.
  • L. Wang, J. Li, M. Catalano, G. Bai, N. Li, J. Dai, X. Wang, H. Zhang, J. Wang, and M.J. Kim, Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer, Comp. Part A. 113 (2018), pp. 76–82.
  • G. Chang, F. Sun, L. Wang, Y. Zhang, X. Wang, J. Wang, M.J. Kim, and H. Zhang, Mo-interlayer-mediated thermal conductance at Cu/diamond interface measured by time-domain thermoreflectance, Comp. Part A. 135 (2020), pp. 105921.
  • L. Xin, X. Tian, W. Yang, G. Chen, J. Qiao, F. Hu, Q. Zhang, and G. Wu, Enhanced stability of the diamond/Al composites by W coatings prepared by the magnetron sputtering method, J. Alloys Compd. 763 (2018), pp. 305–313.
  • X. Liu, F. Sun, L. Wang, Z. Wu, X. Wang, J. Wang, M.J. Kim, and H. Zhang, The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci. 515 (2020), pp. 146046.
  • C. Edtmaier, J. Segl, R. Koos, M. Schöbel, and C. Feldbaumer, Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: effect of diamond surface termination and processing conditions, Diamond Relat. Mater. 106 (2020), pp. 107842.
  • Z. Tan, Z. Li, G. Fan, Q. Guo, X. Kai, G. Ji, L. Zhang, and D. Zhang, Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer, Mater. Des. 47 (2013), pp. 160–166.
  • Z. Che, Q. Wang, L. Wang, J. Li, H. Zhang, Y. Zhang, X. Wang, J. Wang, and M.J. Kim, Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration, Comp. Part B. 113 (2017), pp. 285–290.
  • X. Bin, X. Wang, X. Hua, and D. Yi, Process and performance of β-SiCp/Al prepared by bottom-vacuum pressureless infiltration, Rare Met. Mater. Eng. 43 (2014), pp. 2089–2094.
  • Q. Wu, J. Xie, C. Wang, L. Li, A. Wang, and A. Mao, First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces, Surf. Sci. 670 (2018), pp. 1–7.
  • C. Qiu, Y. Su, B. Chen, J. Yang, Z. Li, Q. Ouyang, Q. Guo, D. Xiong, and D. Zhang, First-principles investigation of interfacial stability, mechanical behavior and failure mechanism of β-SiC(111)/Al(111) interfaces, Comput. Mater. Sci. 175 (2020), pp. 109608.
  • A. Melaibari, A. Fathy, M. Mansouri, and M.A. Eltaher, Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites, J. Alloys Compd. 774 (2019), pp. 1123–1132.
  • D.J. Siegel, L.G. Hector, Jr., and J.B. Adams, Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC, Surf. Sci. 498 (2002), pp. 321–336.
  • Y. Xian, R. Qiu, X. Wang, and P. Zhang, Interfacial properties and electron structure of Al/B4C interface: a first-principles study, J. Nucl. Mater. 478 (2016), pp. 227–235.
  • Z.J. Wang, S. Liu, Z.X. Qiu, H.Y. Sun, and W.C. Liu, First-principles calculations on the interface of the Al/TiC aluminum matrix composites, Appl. Surf. Sci. 505 (2020), pp. 144502.
  • Z. Tan, Z. Li, D.B. Xiong, G. Fan, G. Ji, and D. Zhang, A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites, Mater. Des. 55 (2014), pp. 257–262.
  • H. Xie, Y. Chen, T. Zhang, N. Zhao, C. Shi, C. He, and E. Liu, Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: a first principles study, Appl. Surf. Sci. 527 (2020), pp. 146817.
  • S. Ma, N. Zhao, C. Shi, E. Liu, C. He, F. He, and L. Ma, Mo2c coating on diamond: different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl. Surf. Sci 402 (2017), pp. 372–383.
  • L. Chen, Y. Li, B. Xiao, Q. Zheng, Y. Gao, S. Zhao, and Z. Wang, First-principles calculation on the adhesion strength, fracture mechanism, interfacial bonding of the NiTi(111)//α-Al2O3(0001) interfaces, Mater. Des. 183 (2019), pp. 108119.
  • Z. Wu and R.E. Cohen, More accurate generalized gradient approximation for solids, Phys. Rev. B. 73 (2006), pp. 235116.
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys: Condens. Matter. 14 (2002), pp. 2717–2744.
  • D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990), pp. 7892–7895.
  • J.D. Head and M.C. Zerner, A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries, Chem. Phys. Lett. 122 (1985), pp. 264–270.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976), pp. 5188–5192.
  • G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, 1971.
  • R.J. Fries and C.P. Kempter, 195. Dimolybdenum carbide, Anal. Chem. 32 (1960), pp. 1898.
  • J. Haines, J.M. Léger, C. Chateau, and J.E. Lowther, Experimental and theoretical investigation of Mo2C at high pressure, J. Phys: Cond Matter. 13 (2001), pp. 2447–2454.
  • X.R. Shi, S.G. Wang, H. Wang, C.M. Deng, Z. Qin, and J. Wang, Structure and stability of β-Mo2C bulk and surfaces: A density functional theory study, Surf. Sci. 603 (2009), pp. 852–859.
  • H. Liu, J. Zhu, Z. Lai, R. Zhao, and D. He, A first-principles study on structural and electronic properties of Mo2C, Scr. Mater. 60 (2009), pp. 949–952.
  • Y. Liu, Y. Jiang, R. Zhou, X. Liu, and J. Feng, Elastic and thermodynamic properties of Mo2C polymorphs from first principles calculations, Ceram. Int. 41 (2015), pp. 5239–5246.
  • X. Pang, W. Yang, J. Yang, M. Pang, and Y. Zhan, Atomic structure, stability and electronic properties of S(Al2CuMg)/Al interface: A first-principles study, Intermetallics. 93 (2018), pp. 329–337.
  • T. Yang, M. Wei, Z. Ding, X. Han, and J. Li, First-principle calculations on the Al/L12-Al3Zr heterogeneous nucleation interface, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 69 (2020), pp. 101768.
  • P.H. Miller, Jr. and J.W.M. DuMond, Tests for the validity of the X-Ray crystal method for determining N and e with aluminum, silver and quartz, Phys Rev. 57 (1940), pp. 198–206.
  • X. Pang, J. Yang, M. Pang, J. He, W. Yang, H. Qin, and Y. Zhan, Theoretical understanding of atomic and electronic structures of the ZrC(111)/Cu(111) interface, J. Alloys Compd. 791 (2019), pp. 431–437.
  • X. Zhang, P. Xu, M. Zhang, G. Liu, Z. Xu, J. Yang, H. Shao, and G. Qiao, Improving the wettability of Ag/ZrB2 system by Ti, Zr and Hf addition: an insight from first-principle calculations, Appl. Surf. Sci. 517 (2020), pp. 146201.
  • K. Rapcewicz, B. Chen, B. Yakobson, and J. Bernholc, Consistent methodology for calculating surface and interface energies, Phys. Rev. B. 57 (1998), pp. 7281.
  • L.L. Seigle, C.L. Chang, and T.P. Sharma, Free energy of formation of Mo2C and the thermodynamic properties of carbon in solid molybdenum, Metall. Trans. A. 10 (1979), pp. 1223–1228.
  • Z. Zhuo, H. Mao, H. Xu, and Y. Fu, Density functional theory study of Al/NbB2 heterogeneous nucleation interface, Appl. Surf. Sci. 456 (2018), pp. 37–42.
  • W.R. Tyson and W.A. Miller, Surface free energies of solid metals: estimation from liquid surface tension measurements, Surf. Sci. 62 (1977), pp. 267–276.
  • B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metall. Trans. 1 (1970), pp. 1987–1995.
  • W. Liu, J.C. Li, W.T. Zheng, and Q. Jiang, Nial(110)/Cr(110) interface: a density functional theory study, Phys. Rev. B. 73 (2006), pp. 205421.
  • J.H. Rose, J. Ferrante, and J.R. Smith, Universal binding energy curves for metals and bimetallic interfaces. Phys. Rev. Lett. 47 (1981), pp. 675–678.
  • R. Liu, X. Yin, K. Feng, and R. Xu, First-principles calculations on Mg/TiB2 interfaces, Comput. Mater. Sci. 149 (2018), pp. 373–378.
  • J. Li, M. Zhang, Y. Zhou, and G. Chen, First-principles study of Al/A13Ti heterogeneous nucleation interface, Appl. Surf. Sci. 307 (2014), pp. 593–600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.