145
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Atom scale study of cracks in the carbide phase of WC–Co alloys

ORCID Icon
Pages 1144-1159 | Received 09 Nov 2020, Accepted 26 Jan 2021, Published online: 13 Feb 2021

References

  • S.G. Bailey and C.M. Perrott, Wear processes exhibited by WC-Co rotary cutters in mining. Wear 29 (1974), pp. 117–128. doi:10.1016/0043-1648(74)90139-2.
  • I. Konyashin, B. Ries, S. Hlawatschek, and A. Mazilkin, Novel industrial hardmetals for mining, construction and wear applications. Int. J. Refract. Met. Hard Mater. 71 (2018), pp. 357–365. doi:10.1016/j.ijrmhm.2017.10.021.
  • L.S. Sigl and H.E. Exner, Experimental study of the mechanics of fracture in WC-Co alloys. Met. Trans. A 18 (1987), pp. 1299–1308. doi:10.1007/BF02647199.
  • U. Schleinkofer, H.G. Sockel, K. Görting, and W. Heinrich, Microstructural processes during subcritical crack growth in hard metals and cermets under cyclic loads. Mat. Sci. Eng. A 209 (1996), pp. 103–110. doi:10.1016/0921-5093(95)10098-9.
  • M. Kotoul, On the shielding effect of a multiligament zone of a crack in WC-Co. Acta Mater. 45 (1997), pp. 3363–3376. doi:10.1016/S1359-6454(97)00014-1.
  • J.M. Tarragó, E. Jiménez-Piqué, L. Schneider, D. Casellas, Y. Torres, and L. Llanes, FIB/FESEM experimental and analytical assessment of R-curve behavior of WC-Co cemented carbides. Mat. Sci. Eng. A 645 (2015), pp. 142–149. doi:10.1016/j.msea.2015.07.090.
  • K.P. Mingard, H.G. Jones, M.G. Gee, B. Roebuck, and J.W. Nunn, In situ observation of crack growth in a WC-Co hardmetal and characterisation of crack growth morphologies by EBSD. Int. J. Refract. Met. Hard Mater. 36 (2013), pp. 136–142. doi:10.1016/j.ijrmhm.2012.08.006.
  • D. Mari, S. Bolognini, G. Feusier, T. Viatte, and W. Benoit, Experimental strategy to study the mechanical behaviour of hardmetals for cutting tools. Int. J. Refract. Met. Hard Mater. 17 (1999), pp. 209–225. doi:10.1016/S0263-4368(98)00078-X.
  • T. Takahashi and E.J. Freise, Determination of the slip systems in single crystals of tungsten monocarbide. Phil. Mag. 115 (1965), pp. 1–8. doi:10.1080/14786436508224941.
  • D. Lewis and L.J. Porter, Plastic deformation in tungsten carbide. J. Appl. Cryst. 2 (1969), pp. 249–252. doi:10.1107/S0021889869007151.
  • S.B. Luyckx, Slip system of tungsten carbide crystals at room temperature. Acta Met. 18 (1970), pp. 233–236. doi:10.1016/0001-6160(70)90028-3.
  • V.K. Sarin and T. Johannesson, On the deformation of tungsten carbide-cobalt cemented carbides. Met. Sci. 9 (1975), pp. 472–476. doi:10.1179/030634575790444531.
  • M. Gee, K. Mingard, and B. Roebuck, Application of EBSD to the evaluation of plastic deformation in the mechanical testing of WC/Co hardmetal. Int. J. Refract. Met. Hard Mater. 27 (2009), pp. 300–312. doi:10.1016/j.ijrmhm.2008.09.003.
  • X. Liu, J. Zhang, C. Hou, H. Wang, X. Song, and Z. Nie, Mechanisms of WC plastic deformation in cemented carbide. Mater. Design 150 (2018), pp. 154–164. doi:10.1016/j.matdes.2018.04.025.
  • T. Csanádi, M. Vojtko, and J. Dusza, Deformation and fracture of WC grains and grain boundaries in a WC-Co hardmetal during microcantilever bending tests. Int. J. Refract. Met. Hard Mater. 87 (2020), p. 105163. doi:10.1016/j.ijrmhm.2019.105163.
  • F. De Luca, H. Zhang, K. Mingard, M. Stewart, B.M. Jablon, C. Trager-Cowan, and M.G. Gee, Nanomechanical behaviour of individual phases in WC-Co cemented carbides, from ambient to high temperature. Materialia 12 (2020), p. 100713. doi:10.1016/j.mtla.2020.100713.
  • M.K. Hibbs, R. Sinclair, and D.J. Rowcliffe, Defect interactions in deformed WC. Acta Metall. 32 (1984), pp. 941–947. doi:10.1016/0001-6160(84)90031-2.
  • V. Jayaram, A. Kronenberg, S.H. Kirby, D.J. Rowcliffe, and R. Sinclair, Plastic deformation of tungsten carbide-cobalt at high confining pressure. Scr. Metall. 20 (1986), pp. 701–705. doi:10.1016/0036-9748(86)90495-3.
  • G. Östberg, K. Buss, M. Christensen, S. Norgren, H.-O. Andrén, D. Mari, G. Wahnström, and I. Reineck, Mechanisms of plastic deformation of WC-Co and Ti(C, N)-WC-Co. Int. J. Refract. Met. Hard Mater. 24 (2006), pp. 135–144. doi:10.1016/j.ijrmhm.2005.04.009.
  • U.A. Özden, K.P. Mingard, M. Zivcec, A. Bezold, and C. Broeckmann, Mesoscopical finite element simulation of fatigue crack propagation in WC/Co-hardmetal. Int. J. Refract. Met. Hard Mater. 49 (2015), pp. 261–267. doi:10.1016/j.ijrmhm.2014.07.022.
  • I.M. Robertson and H.K. Birnbaum, An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall. 34 (1986), pp. 353–366. doi:10.1016/0001-6160(86)90071-4.
  • K. Higashida, N. Narita, S. Asano, and R. Onodera, Dislocation emission from a crack tip in MgO thin crystals. Mater. Sci. Eng. A 285 (2000), pp. 111–121. doi:10.1016/S0921-5093(00)00722-X.
  • Y. Xing, F. Dai, and W. Yang, Experimental study about nano-deformation field near quasi-cleavage crack tip. Sci. China A: Math. 43 (2000), pp. 963–968. doi:10.1007/BF02879802.
  • S. Ii, C. Iwamoto, K. Matsunaga, T. Yamamoto, and Y. Ikuhara, Identification of crack path of inter- and transgranular fractures in sintered silicon nitride by in situ TEM. J. Electron Microsc. 53 (2004), pp. 121–127. doi:10.1093/jmicro/53.2.121.
  • T.H. Ly, J. Zhao, M.O. Cichocka, L.-J. Li, and Y.H. Lee, Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2. Nature Comm. 8 (2017), p. 14116. doi:10.1038/ncomms14116.
  • D.R.G. Mitchell, HRTEM Filter, 2007. Available at https://www.felmi-zfe.at/dm_script/.
  • R. Kilaas, Optimal and near-optimal filters in high-resolution electron microscopy. J. Microsc. 190 (1998), pp. 45–51. doi:10.1046/j.1365-2818.1998.3070861.x.
  • R. Bonnet and M. Loubradou, HRPACK: a software describing the elastic fields near dislocations and interfaces at atomic scale. Ultramicrosc. 69 (1997), pp. 241–257. doi:10.1016/S0304-3991(97)00048-X.
  • M. Lee and R.S. Gilmore, Single crystal elastic constants of tungsten monocarbide. J. Mater. Sci. 17 (1982), pp. 2657–2660. doi:10.1007/BF00543901.
  • M.K. Hibbs and R. Sinclair, Room-temperature deformation mechanisms and the defect structure of tungsten carbide. Acta Metall. 29 (1981), pp. 1645–1654. doi:10.1016/0001-6160(81)90047-X.
  • R.M. Greenwood, M.H. Loretto, and R.E. Smallman, The defect structure of tungsten carbide in deformed tungsten carbide-cobalt composites. Acta Metall. 30 (1982), pp. 1193–1196. doi:10.1016/0001-6160(82)90013-X.
  • S. Lay, G. Nouet, and J. Vicens, Deformation mechanisms of refractory carbides – Application to W-Co carbides composites. J. Microsc. Spectrosc. Electron 11 (1986), pp. 179–194.
  • B.M. Jablon, K. Mingard, A. Winkelmann, G. Naresh-Kumar, B. Hourahine, and C. Trager-Cowan, Subgrain structure and dislocations in WC-Co hard metals revealed by electron channelling contrast imaging. Int. J. Refract. Met. Hard Mater. 87 (2020), p. 105159. doi:10.1016/j.ijrmhm.2019.105159.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York,1968, pp. 20–22.
  • D. Hull and D.J. Bacon, Introduction to Dislocations, Pergamon Press, Oxford, 1984.
  • J.J. Gilman, Influence of dislocation dipoles on physical properties. Discuss. Faraday. Soc. 38 (1964), pp. 123–137. doi:10.1039/DF9643800123.
  • H.S. Chen, J.J. Gilman, and A.K. Head, Dislocation multipoles and their role in strain-hardening. J. Appl. Phys. 35 (1964), pp. 2502–2514. doi:10.1063/1.1702890.
  • R.E. Smallman, Modern Physical Metallurgy, Butterworths, London, 1962.
  • M.K. Hibbs, R. Sinclair, and D.J. Rowcliffe, Defect interactions in deformed WC. Acta Metall. 32 (1984), pp. 941–947. doi:10.1016/0001-6160(84)90031-2.
  • V. Jayaram, R. Sinclair, and D.J. Rowcliffe, Deformation enhanced decarburization of tungsten carbide-cobalt alloy. Scr. Metall. 20 (1986), pp. 55–60. doi:10.1016/0036-9748(86)90212-7.
  • J. Weidow, S. Johansson, H.-O. Andrén, and G. Wahnström, Transition metal solubilities in WC in cemented carbide materials. J. Am. Ceram. Soc. 94 (2011), pp. 605–610. doi:10.1111/j.1551-2916.2010.04122.x.
  • Y.H. Chiao and D.R. Clarke, Direct observation of dislocation emission from crack tips in silicon at high temperatures. Acta Metall. 37 (1989), pp. 203–219. doi:10.1016/0001-6160(89)90279-4.
  • W. Zielinski, M.J. Lii, and W.W. Gerberich, Crack-tip dislocation emission arrangements for equilibrium – I. In situ TEM observations of Fe2wt%Si. Acta Metall. et Mater. 40 (1992), pp. 2861–2871. doi:10.1016/0956-7151(92)90451-J.
  • K. Higashida, N. Narita, R. Onodera, S. Minato, and S. Okazaki, HVEM observations of dislocation structures near a crack tip in MgO crystals. Mat. Sci. Eng. A 237 (1997), pp. 72–78. doi:10.1016/S0921-5093(97)00118-4.
  • C.W. Zhao and Y. Xing, Quantitative analysis of nanoscale deformation fields of a crack-tip in single-crystal silicon. Sci. China Phys. Mech. Astron. 55 (2012), pp. 1088–1092. doi:10.1007/s11433-012-4729-2.
  • A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, Clarendon Press, Oxford, 1995.
  • K. Jagannadham, H.G.F. Wilsdorf, and J. Weertman, Dislocations at ductile/plastic crack tips: in-situ TEM observations. Mater. Res. Innov. 1 (1998), pp. 254–264. doi:10.1007/s100190050050.
  • J.J. Gilman, Importance of dislocation cores in fatigue fracture. J. Mater. Sci. 43 (2008), pp. 6500–6504. doi:10.1007/s10853-008-2970-x.
  • X.Y. Gu, D.S. Xu, H. Wang, and R. Yang, Lattice weakening by edge dislocation core under tension. Model. Simul. Mater. Sci. Eng. 18 (2010), p. 065004. doi:10.1088/0965-0393/18/6/065004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.