107
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Pancharatnam metals with integer and fractional quantum Hall effects

ORCID Icon
Pages 1573-1586 | Received 30 Oct 2020, Accepted 19 Feb 2021, Published online: 11 Mar 2021

References

  • K.v. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45 (1980), pp. 494–497.
  • D.C. Tsui, H.L. Stormer, and A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48 (1982), pp. 1559–1562.
  • R.B. Laughlin, Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50 (1983), pp. 1395–1398.
  • R.B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B. 23 (1981), pp. 5632–5633.
  • D.J. Thouless, M. Kohmoto, M.P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49 (1982), pp. 405–408.
  • M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Ann. Phys. (N.Y.)160 (1985), pp. 343–354.
  • J.K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63 (1989), pp. 199–202.
  • J.K. Jain, Microscopic theory of the fractional quantum Hall effect, Adv. Phys. 41 (1992), pp. 105–146.
  • J.K. Jain, A note contrasting two microscopic theories of the fractional quantum Hall effect, Indian J. Phys. 88 (2014), pp. 915–929.
  • G. Murthy and R. Shankar, Hamiltonian theories of the fractional quantum Hall effect, Rev. Mod. Phys. 75 (2003), pp. 1101–1158.
  • F. Wilczek, Quantum mechanics of fractional-spin particles, Phys. Rev. Lett. 49 (1982), pp. 957–959.
  • A.D. Arulsamy, Magnetoresistance in quantum Hall metals due to pancharatnam wavefunction transformation and degenerate Landau levels, Pramana J. Phys. 85 (2015), pp. 161–172.
  • S. Pancharatnam, Generalized theory of interference, and its applications, Proc. Indian Acad. Sci. A44 (1956), p. 427.
  • Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn 82 (2013), p. 102001.
  • B. Simon, Holonomy, the quantum adiabatic theorem, and Berry's phase, Phys. Rev. Lett. 51 (1983), pp. 2167–2170.
  • A.D. Arulsamy, Interaction-induced energy-level crossing and transport phenomena in topological insulators, RSC Adv. 6 (2016), pp. 109259–109266.
  • P. Drude, Zur elektronentheorie der metalle, Ann. Der Phys. 1 (1900), pp. 566–613.
  • P. Drude, Zur elektronentheorie der metalle; II. teil. galvanomagnetische und thermomagnetische effecte, Ann. Der Phys. 3 (1900), pp. 369–402.
  • N.W. Ashcroft and N.D. Mermin, Solid State Physics, Thomson Learning, Melbourne, 1976.
  • A.D. Arulsamy,. preprint (2020), submitted for publication. Available at https://www.researchgate.net/publication/342880823.
  • A.D. Arulsamy, An alternative normal state c-axis resistivity model for high-Tc superconductors, Phys. C 356 (2001), pp. 62–66.
  • A.D. Arulsamy, Pancharatnam's phase advance and its validity for both integral and half-integral spins, Optik 202 (2020), p. 161909.
  • S.A. Vitkalov, Hall coefficient and electron–electron interaction of two-dimensional electrons in Si MOSFETs, Phys. Rev. B 64 (2001), p. 195336.
  • S. Das Sarma and E.H. Hwang, Screening and transport in 2D semiconductor systems at low temperatures, Sci. Rep. 5 (2015), p. 16655.
  • K.v. Klitzing, Quantum hall effect: Discovery and application, Ann. Rev. Cond. Mat. Phys. 8 (2017), pp. 13–30.
  • H.L. Stormer, The Nobel lecture in physics (1998), NobelPrize.org. Available at https://www.nobelprize.org/prizes/physics/1998/stormer/lecture/.
  • T. Chakraborty and P. Pietilainen, The Fractional Quantum Hall Effect, Springer, New York, 1988.
  • D.C. Tsui, Nobel lecture: Interplay of disorder and interaction in two-dimensional electron gas in intense magnetic fields, Rev. Mod. Phys. 71 (1999), pp. 891–895.
  • R. Willett, J.P. Eisenstein, H.L. Stormer, D.C. Tsui, A.C. Gossard, and J.H. English, Observation of an even-denominator quantum number in the fractional quantum Hall effect, Phys. Rev. Lett. 59 (1987), pp. 1776–1779.
  • Y. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum hall effect and Berry's phase in graphene, Nature 438 (2005), pp. 201–204.
  • C.R. Dean, A.F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K.L. Shepard, Multicomponent fractional quantum Hall effect in graphene, Nat. Phys. 7 (2011), pp. 693–696.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.