283
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Closed-form functions of cross-scale indentation scaling relationships based on a strain gradient plasticity theory

ORCID Icon, &
Pages 1305-1326 | Received 19 Nov 2020, Accepted 24 Feb 2021, Published online: 16 Mar 2021

References

  • D. Tabor, The hardness and strength of metals. J. Inst. Met. 79 (1951), pp. 1–18.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6) (1992), pp. 1564–1583. doi:10.1557/JMR.1992.1564.
  • J.H. Lee, T. Kim and H. Lee, A study on robust indentation techniques to evaluate elastic–plastic properties of metals. Int. J. Solids Struct. 47(5) (2010), pp. 647–664. doi:10.1016/j.ijsolstr.2009.11.003.
  • Y.-T. Cheng and C.-M. Cheng, Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84(3) (1998), pp. 1284–1291. doi:10.1063/1.368196.
  • Y.-T. Cheng and C.-M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73(5) (1998), pp. 614–616. doi:10.1063/1.121873.
  • Y.-T. Cheng and C.-M. Cheng, Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81(1) (2001), pp. 9–16. doi:10.1080/09500830010008457.
  • Y.-T. Cheng and C.-M. Cheng, Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. Rep. 44(4-5) (2004), pp. 91–149. doi:10.1016/j.mser.2004.05.001.
  • Z. Lin, Z. Yu and Y. Wei, Measurement of nanoindentation properties of polymers considering adhesion effects between AFM sharp indenter and material. J. Adhes. Sci. Technol. 38(3) (2020), pp. 1–18. doi:10.1080/01694243.2020.1714117.
  • F. Pöhl, Determination of unique plastic properties from sharp indentation. Int. J. Solids Struct. 171 (2019), pp. 174–180. doi:10.1016/j.ijsolstr.2019.04.008.
  • E. Bazzaz, A. Darvizeh, M. Alitavoli and M.Y. Tooski, Implementation of the new minimum resultant error approach to extract elastic-plastic properties of titanium nitride thin film by nanoindentation, finite element analysis, and modified dimensional analysis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 54 (2020), 095440622091432. doi:10.1177/0954406220914326.
  • L. Lu, M. Dao, P. Kumar, U. Ramamurty, G.E. Karniadakis and S. Suresh, Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc. Natl. Acad. Sci. U. S. A. 117(13) (2020), pp. 7052–7062. doi:10.1073/pnas.1922210117.
  • H. Lee, W.Y. Huen, V. Vimonsatit and P. Mendis, An investigation of nanomechanical properties of materials using nanoindentation and artificial neural network. Sci. Rep. 9(1) (2019), pp. 13189. doi:10.1038/s41598-019-49780-z.
  • M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh and S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49 (2001), pp. 3899–3918.
  • N. Chollacoop, M. Dao and S. Suresh, Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51(13) (2003), pp. 3713–3729. doi:10.1016/S1359-6454(03)00186-1.
  • M. Zhao, N. Ogasawara, N. Chiba and X. Chen, A new approach to measure the elastic–plastic properties of bulk materials using spherical indentation. Acta Mater. 54(1) (2006), pp. 23–32. doi:10.1016/j.actamat.2005.08.020.
  • X. Chen, N. Ogasawara, M. Zhao and N. Chiba, On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J. Mech. Phys. Solids 55(8) (2007), pp. 1618–1660. doi:10.1016/j.jmps.2007.01.010.
  • M.-Q. Le, Material characterization by dual sharp indenters. Int. J. Solids Struct. 46(16) (2009), pp. 2988–2998. doi:10.1016/j.ijsolstr.2009.03.027.
  • A.R. Hosseinzadeh and A.H. Mahmoudi, Determination of mechanical properties using sharp macro-indentation method and genetic algorithm. Mech. Mater. 114 (2017), pp. 57–68. doi:10.1016/j.mechmat.2017.07.004.
  • D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39(1) (1994), pp. 1–23. doi:10.1179/imr.1994.39.1.1.
  • R.W. Armstrong, Size effects on material yield strength/deformation/fracturing properties. J. Mater. Res. 34(13) (2019), pp. 2161–2176. doi:10.1557/jmr.2018.406.
  • A.C. Fischer-Cripps and D.W. Nicholson, Nanoindentation. Mechanical engineering series. Appl. Mech. Rev. 57(2) (2004), pp. B12–B12. doi:10.1115/1.1704625.
  • S.N. Magonov, V. Elings and M.-H. Whangbo, Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375(2-3) (1997), pp. L385–L391. doi:10.1016/S0039-6028(96)01591-9.
  • D.E. Stegall, M.A. Mamun, B. Crawford and A. Elmustafa, Indentation size effect in FCC metals: An examination of experimental techniques and the bilinear behavior. J. Mater. Res. 27(12) (2012), pp. 1543–1552. doi:10.1557/jmr.2012.91.
  • M. Lucas, K. Gall and E. Riedo, Tip size effects on atomic force microscopy nanoindentation of a gold single crystal. J. Appl. Phys. 104(11) (2008), pp. 113515. doi:10.1063/1.3039511.
  • G. Voyiadjis and M. Yaghoobi, Review of nanoindentation size effect: experiments and atomistic simulation. Crystals. (Basel) 7(10) (2017), pp. 321. doi:10.3390/cryst7100321.
  • G. Dini, A. Najafizadeh, R. Ueji and S.M. Monir-Vaghefi, Tensile deformation behavior of high manganese austenitic steel: The role of grain size. Mater. Des. 31(7) (2010), pp. 3395–3402. doi:10.1016/j.matdes.2010.01.049.
  • J.-F. Nie, Precipitation and hardening in magnesium alloys. Metall. Mat. Trans. A 43(11) (2012), pp. 3891–3939. doi:10.1007/s11661-012-1217-2.
  • K. Ma, et al., Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62 (2014), pp. 141–155. doi:10.1016/j.actamat.2013.09.042.
  • I. Gutierrez-Urrutia and D. Raabe, Grain size effect on strain hardening in twinning-induced plasticity steels. Scr. Mater. 66(12) (2012), pp. 992–996. doi:10.1016/j.scriptamat.2012.01.037.
  • G.I. Taylor, The mechanism of plastic deformation of crystals part I – theoretical. Proc. R. Soc. London Series A 145(885) (1934), pp. 362–387.
  • G.I. Taylor, Plastic strain in metals. J. Inst. Metals 62 (1938), pp. 307–324.
  • H. Gao, Y. Huang, W.D. Nix and J.W. Hutchinson, Mechanism-based strain gradient plasticity I. Theory. J. Mech. Phys. Solids 47(6) (1999), pp. 1239–1263. doi:10.1016/S0022-5096(98)00103-3.
  • N.A. Fleck and J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33 (1997), pp. 296–361.
  • Y. Huang, S. Qu, K.C. Hwang, M. Li and H. Gao, A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20(4-5) (2004), pp. 753–782. doi:10.1016/j.ijplas.2003.08.002.
  • Z. Yu, Z. Lin and Y. Wei, Investigation on cross-scale indentation scaling relationships of elastic-plastic solids. Acta Mech. (2021). doi:10.1007/s00707-020-02913-2
  • Michael Smith, ABAQUS/standard user’s manual, Version 6.14. Pawtucket, Rhode Island. (2014).
  • M.F. Doerner and W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4) (1986), pp. 601–609. doi:10.1557/JMR.1986.0601.
  • C.-J. Lu and D.B. Bogy, The effect of tip radius on nano-indentation hardness tests. Int. J. Solids Struct. 32(12) (1995), pp. 1759–1770. doi:10.1016/0020-7683(94)00194-2.
  • Y. Wei, S. Shu, Y. Du and C. Zhu, Size, geometry and nonuniformity effects of surface-nanocrystalline aluminum in nanoindentation test. Int. J. Plast. 21(11) (2005), pp. 2089–2106. doi:10.1016/j.ijplas.2005.04.002.
  • Y. Wei, X. Wang, X. Wu and Y. Bai, Theories and experiments of size-effect in indentation. Sci. China Ser. A Math. 30(11) (2000), pp. 1025–1032. doi:10.1360/za2000-30-11-1025.
  • P. Cavaliere, Cyclic deformation of ultra-fine and nanocrystalline metals through nanoindentation: similarities with crack propagation. Proc. Eng. 2(1) (2010), pp. 213–222. doi:10.1016/j.proeng.2010.03.023.
  • J.G. Swadener, E.P. George and G.M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50 (2002), pp. 681–694.
  • O. Casals and J. Alcalá, The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments. Acta Mater. 53(13) (2005), pp. 3545–3561. doi:10.1016/j.actamat.2005.03.051.
  • J.-Y. Kim, S.-K. Kang, J.-J. Lee, J.-I. Jang, Y.-H. Lee and D. Kwon, Influence of surface-roughness on indentation size effect. Acta Mater. 55(10) (2007), pp. 3555–3562. doi:10.1016/j.actamat.2007.02.006.
  • Y.Y. Lim and M.M. Chaudhri, The effect of the indenter load on the nanohardness of ductile metals: An experimental study on polycrystalline work-hardened and annealed oxygen-free copper. Philos. Mag. A 79(12) (1999), pp. 2979–3000. doi:10.1080/01418619908212037.
  • N.A. Fleck and J.W. Hutchinson, A phenomenological theroy for strain gradient effects in plasticity. J. Mech. Phys. Solids 41 (1993), pp. 1825–1857.
  • J.Y. Shu and C.Y. Barlow, Strain gradient effects on microscopic strain field in a metal matrix composite. Int. J. Plast. 16(5) (2000), pp. 563–591. doi:10.1016/S0749-6419(99)00088-1.
  • Y. Wei and J.W. Hutchinson, Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J. Mech. Phys. Solids 45(8) (1997), pp. 1253–1273. doi:10.1016/S0022-5096(97)00018-5.
  • W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3) (1998), pp. 411–425. doi:10.1016/S0022-5096(97)00086-0.
  • Y. Huang, H. Gao, W.D. Nix and J.W. Hutchinson, Mechanism-based strain gradient plasticity II. Analysis. J. Mech. Phys. Solids 48 (2000), pp. 99–128.
  • E. Martínez-Pañeda and C. Betegón, Modeling damage and fracture within strain-gradient plasticity. Int. J. Solids Struct. 59 (2015), pp. 208–215. doi:10.1016/j.ijsolstr.2015.02.010.
  • E. Martínez-Pañeda and C.F. Niordson, On fracture in finite strain gradient plasticity. Int. J. Plast. 80 (2016), pp. 154–167. doi:10.1016/j.ijplas.2015.09.009.
  • S. Qu, Y. Huang, H. Jiang, C. Liu, P.D. Wu and K.C. Hwang, Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. Int. J. Fract. 129 (2004), pp. 199–220.
  • H. Song, E. van der Giessen and X. Liu, Strain gradient plasticity analysis of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 96 (2016), pp. 18–28. doi:10.1016/j.jmps.2016.07.008.
  • S. Swaddiwudhipong, K.K. Tho, J. Hua and Z.S. Liu, Mechanism-based strain gradient plasticity in C0 axisymmetric element. Int. J. Solids Struct. 43(5) (2006), pp. 1117–1130. doi:10.1016/j.ijsolstr.2005.05.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.