517
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Texture-dependent dwell fatigue response of titanium

, & ORCID Icon
Pages 1443-1470 | Received 21 Nov 2020, Accepted 27 Feb 2021, Published online: 28 Apr 2021

References

  • D. Banerjee and J.C. Williams, Perspectives on titanium science and technology. Acta Mater. 61 (2013), pp. 844–879.
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101 (2008), pp. 3–6.
  • J.C. Williams, R.G. Baggerly, and N.E. Paton, Deformation behavior of HCP Ti-Al alloy single crystals. Metall. Mater. Trans. a-Physical Metall. Mater. Sci. 33 (2002), pp. 837–850.
  • G. Lutjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Lutjering1998, Mater. Sci. Eng. A 243 (1998), pp. 32–45.
  • Z. Zhang, T.S. Jun, T.B. Britton, and F.P.E. Dunne, Intrinsic anisotropy of strain rate sensitivity in single crystal alpha titanium. Acta Mater. 118 (2016), pp. 317–330.
  • A. Roth, M.A. Lebyodkin, T.A. Lebedkina, J. Lecomte, T. Richeton, and K.E.K. Amouzou, Mechanisms of anisotropy of mechanical properties of α-titanium in tension conditions. Mater. Sci. Eng. A 596 (2014), pp. 236–243.
  • S. Sinha and N.P. Gurao, In-Plane anisotropy in mechanical behavior and Microstructural evolution of commercially pure titanium in tensile and cyclic loading. Metall. Mater. Trans. A 48 (2017), pp. 5813–5832.
  • R. Ohyama, J. Koike, T. Kobayasi, M. Suzuki, and K. Maruyama. Magnesium Alloys 2003, Mater. Sci. Forum 422 (2003), pp. 177–188.
  • J. Koike, Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature, Metall. Mater. Trans. A 36 (2005).
  • M.F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag. (1969), pp. 37–41.
  • Y. Yang, L. Wang, C. Zambaldi, P. Eisenlohr, R. Barabash, W. Liu, M.R. Stoudt, M.A. Crimp, and T.R. Bieler, Characterization and modeling of heterogeneous deformation in commercial purity titanium. Jom 63 (2011), pp. 66–73.
  • B. Barkia, V. Doquet, E. Héripré, and I. Guillot, Characterization and analysis of deformation heterogeneities in commercial purity titanium. Mater. Charact. 108 (2015), pp. 94–101.
  • T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, and M.A. Crimp, The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int. J. Plast. 25 (2009), pp. 1655–1683.
  • V. Doquet and B. Barkia, Combined AFM, SEM and crystal plasticity analysis of grain boundary sliding in titanium at room temperature. Mech. Mater. 103 (2016), pp. 18–27.
  • F. Bridier, P. Villechaise, and J. Mendez, Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales, Acta Mater. (2008).
  • S. Bahl, S. Suwas, and K. Chatterjee, The importance of crystallographic texture in the use of titanium as an orthopedic biomaterial. RSC Adv. 4 (2014), pp. 38078–38087.
  • S. Suwas and N.P. Gurao, Crystallographic texture in materials, J. Indian Inst. Sci. 88 (2008), pp. 151–177.
  • S. Hémery and C. Tromas, P. Villechaise, Slip-stimulated grain boundary sliding in Ti-6Al-4 V at room temperature, Materialia 5 (2019), pp. 0–7.
  • M.R. Bache, A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions. Int. J. Fatigue 25 (2003), pp. 1079–1087.
  • Z. Song and D.W. Hoeppner, Dwell time effects on the fatigue behaviour of titanium alloys. Int. J. Fatigue 10 (1988), pp. 211–218.
  • V. Sinha, M.J. Mills, and J.C. Williams, Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy. Metall. Mater. Trans. A 35 (2004), pp. 3141–3148.
  • Z. Zheng, A. Stapleton, K. Fox, and F.P.E. Dunne, Understanding thermal alleviation in cold dwell fatigue in titanium alloys, Int. J. Plast. (2018), pp. 0–1.
  • K.U. Yazar, S. Mishra, A. Karmakar, and S. Suwas, On the temperature sensitivity of dwell fatigue of a near alpha titanium alloy: role of strain hardening and strain rate sensitivity. Metall. Mater. Trans. A 51 (2020), pp. 5036–5042.
  • L. Yang, J. Liu, J. Tan, Z. Chen, Q. Wang, R. Yang, and J. Mater, Dwell and Normal Cyclic Fatigue Behaviours of Ti60 Alloy, Sci. Technol. 30 (2014), pp. 706–709.
  • Z. Zheng, D.S. Balint, F.P.E. Dunne, and J. Mech, Dwell fatigue in two Ti alloys: an integrated crystal plasticity and discrete dislocation study. Phys. Solids 96 (2016), pp. 411–427.
  • F. Mcbagonluri, E. Akpan, C. Mercer, W. Shen, and W.O. Soboyejo, An investigation of the effects of microstructure on dwell fatigue crack growth in Ti-6242. Mater. Sci. Eng. A 405 (2005), pp. 111–134.
  • Z. Zhang, Micromechanistic study of textured multiphase polycrystals for resisting cold dwell fatigue. Acta Mater. 156 (2018), pp. 254–265.
  • J.C. Williams, The Evaluation of Cold Dwell Fatigue in Ti-6242, 2006.
  • K.U. Yazar, S. Mishra, L. Kumar, S. Bahl, and S. Suwas, The mechanism of texture induced planar anisotropy in the dwell fatigue response of commercially pure titanium : Insights from experiments and full field crystal plasticity simulations, Artic. Submitt. Int. Jouranl Plast.
  • T. Neeraj, D.H. Hou, G.S. Daehn, and M.J. Mills, Phenomenological and microstructural analysis of room temperature creep in titanium alloys. Acta Mater. 48 (2000), pp. 1225–1238.
  • B. Barkia, V. Doquet, J.P. Couzinié, I. Guillot, and E. Héripré, In situ monitoring of the deformation mechanisms in titanium with different oxygen contents. Mater. Sci. Eng. A 636 (2015), pp. 91–102.
  • Y. Wei, A.F. Bower, and H. Gao, Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater. 56 (2008), pp. 1741–1752.
  • Y.M. Wang and E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng. A. 375–377 (2004), pp. 46–52.
  • M.R. Bache, A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions. Int. J. Fatigue 25 (2003), pp. 1079–1087.
  • M. Levy, H. Bass, and R. Stern, Handbook of Elastic properties of solids, liquids and gases, (2001).
  • A. Orozco-Caballero, F. Li, D. Esqué-de los Ojos and M.D. Atkinson, On the ductility of alpha titanium: the effect of temperature and deformation mode. J. Quinta da Fonseca, Acta Mater 149 (2018), pp. 1–10.
  • H. Conrad, Effect of interstitial solutes on the strength and ductility of titanium, Prog. Mater. Sci. (1981).
  • R.L. Bell and T.G. Langdon, An investigation of grain-boundary sliding during creep. J. Mater. Sci. 2 (1967), pp. 313–323.
  • P. Kumar, M. Kawasaki, and T.G. Langdon, Review: overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. J. Mater. Sci. 51 (2016), pp. 7–18.
  • T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon, The contribution of grain boundary sliding in tensile deformation of an ultrafine-grained aluminum alloy having high strength and high ductility. J. Mater. Sci. 50 (2015), pp. 3549–3561.
  • OIMTM Data Collection Manual, TSL Company, 2013.
  • S.K. Mishra, P. Pant, K. Narasimhan, A.D. Rollett, and I. Samajdar, On the widths of orientation gradient zones adjacent to grain boundaries. Scr. Mater. 61 (2009), pp. 273–276.
  • N.P. Gurao, Indian Institute of Science (2010).
  • N.P. Gurao and S. Suwas, Deformation behaviour at macro- and nano-length scales: the development of orientation gradients. Mater. Lett. 99 (2013), pp. 81–85.
  • F.P.E. Dunne, D. Rugg, and A. Walker, Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: application to cold-dwell fatigue in Ti alloys. Int. J. Plast. 23 (2007), pp. 1061–1083.
  • S. Panda, S.K. Sahoo, A. Dash, M. Bagwan, G. Kumar, S.C. Mishra, and S. Suwas, Orientation dependent mechanical properties of commercially pure (cp) titanium. Mater. Charact. 98 (2014), pp. 93–101.
  • V. Hasija, S. Ghosh, M.J. Mills, and D.S. Joseph, Deformation and creep modeling in polycrystalline Ti–6Al alloys. Acta Mater. 51 (2003), pp. 4533–4549.
  • Z. Zheng, D.S. Balint, and F.P.E. Dunne, Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys. Int. J. Plast. 87 (2016), pp. 15–31.
  • F. Bridier, P. Villechaise, and J. Mendez, Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales. Acta Mater. 56 (2008), pp. 3951–3962.
  • S. Joseph, I. Bantounas, T.C. Lindley, and D. Dye, Slip transfer and deformation structures resulting from the low cycle fatigue of near-alpha titanium alloy Ti-6242Si. Int. J. Plast. 100 (2018), pp. 90–103.
  • S. Hémery, P. Nizou, and P. Villechaise, In situ SEM investigation of slip transfer in Ti-6Al-4V: effect of applied stress. Mater. Sci. Eng. A 709 (2018), pp. 277–284.
  • J. Luster and M.A. Morris, Compatibility of deformation in two-phase Ti-Al alloys: dependence on microstructure and orientation relationships. Metall. Mater. Trans. A 26 (1995), pp. 1745–1756.
  • Z. Yan, K. Wang, Y. Zhou, X. Zhu, R. Xin, and Q. Liu, Crystallographic orientation dependent crack nucleation during the compression of a widmannstätten-structure α/β titanium alloy. Scr. Mater. 156 (2018), pp. 110–114.
  • A. Orozco-Caballero, D. Lunt, J.D. Robson, and J. Quinta da Fonseca, How magnesium accommodates local deformation incompatibility: A high-resolution digital image correlation study. Acta Mater. 133 (2017), pp. 367–379.
  • P. Mussot, C. Rey and A. Zaoui, Res Mech. Int. J. Struct. Mech. Mater. Sci. 14 (1985), pp. 69–79.
  • N.P. Gurao and S. Suwas, Deformation behaviour at macro- and nano-length scales: the development of orientation gradients. Mater. Lett 99 (2013), pp. 81–85.
  • S. Wang, Y. Zhang, C. Schuman, J.S. Lecomte, X. Zhao, L. Zuo, M.J. Philippe, and C. Esling, Study of twinning/detwinning behaviors of Ti by interrupted in situ tensile tests. Acta Mater. 82 (2015), pp. 424–436.
  • F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friák, N. Fujita, N. Grilli, K.G.F. Janssens, N. Jia, P.J.J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe, DAMASK – The düsseldorf Advanced material simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comput. Mater. Sci. 158 (2019), pp. 420–478.
  • A.D. Sheikh-Ali and J.A. Szpunar, On the mechanism of the influence of crystallographic slip on grain-boundary sliding at similar deformation of grains. Philos. Mag. Lett. 79 (1999), pp. 545–549.
  • T. Matsunaga, T. Kameyama, S. Ueda, and E. Sato, Grain boundary sliding during ambient-temperature creep in hexagonal close-packed metals. Philos. Mag. 90 (2010), pp. 4041–4054.
  • M. Mills, J.C. Williams, S. Ghosh, S. Rokhlin, M.C. Brandes, A.L. Pilchak, and J. Williams, The Evaluation of Cold Dwell Fatigue in Ti-6242, (2018).
  • K.U. Yazar, S. Bahl, S. Mishra, V. Sahu, A. Bhattacharjee, and S. Suwas, Understanding crack nucleation mechanisms under normal and dwell fatigue of IMI 834, Artic. Submitt. to Acta Mater. (n.d.).
  • L. Lu, M.L. Sui, and K. Lu, Science 80(287) (2000), pp. 1463–1466.
  • R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17 (2002), pp. 5–8.
  • T. Matsunaga, H. Somekawa, H. Hongo, and M. Tabuchi, Strain-rate sensitivity enhanced by grain-boundary sliding in creep condition for AZ31 magnesium alloy at room temperature. Mater. Sci. Forum 838–839 (2016), pp. 106–109.
  • D. Hull and D.J. Bacon, Introduction to Dislocations, 2001.
  • S. Zaefferer, A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture. Mater. Sci. Eng. A 344 (2003), pp. 20–30.
  • A. Ghosh, A. Singh, and N.P. Gurao, Effect of rolling mode and annealing temperature on microstructure and texture of commercially pure-titanium. Mater. Charact. 125 (2017), pp. 83–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.