362
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Investigation of structural, electronic, magnetic, elastic and thermodynamic properties of Mn3GaN antiperovskite by first principle and Monte Carlo simulations

ORCID Icon, , &
Pages 1587-1601 | Received 15 Jul 2020, Accepted 29 Mar 2021, Published online: 28 Apr 2021

References

  • J. Yan, Y. Sun, H. Wu, Q. Huang, C. Wang, Z. Shi, S. Deng, K. Shi, H. Lu, and L. Chu, Phase transitions and magnetocaloric effect in Mn 3Cu 0.89N 0.96, Acta Mater. 74 (2014), pp. 58–65.
  • K. Asano, K. Koyama, and K. Takenaka, Magnetostriction in Mn 3CuN, Appl. Phys. Lett. 92(16) (2008), p. 161909.
  • E. Chi, W. Kim, and N. Hur, Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn 3, Solid State Commun. 120(7–8) (2001), pp. 307–310.
  • B. Song, J. Jian, H. Bao, M. Lei, H. Li, G. Wang, Y. Xu, and X. Chen, Observation of spin-glass behavior in antiperovskite Mn 3GaN, Appl. Phys. Lett. 92(19) (2008), p. 192511.
  • M. Mochizuki, M. Kobayashi, R. Okabe, and D. Yamamoto, Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets, Phys. Rev. B 97(6) (2018), p. 060401.
  • Y. Sun, C. Wang, Y. Wen, L. Chu, M. Nie, and F. Liu, Negative thermal expansion and correlated magnetic and electrical properties of Si-doped Mn 3GaN compounds, J. Am. Ceram. Soc. 93(3) (2010), pp. 650–653.
  • T. Hajiri, S. Ishino, K. Matsuura, and H. Asano, Electrical current switching of the noncollinear antiferromagnet Mn +3GaN, Appl. Phys. Lett. 115(5) (2019), p. 052403.
  • V.T.N. Huyen, M.-T. Suzuki, K. Yamauchi, and T. Oguchi, Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn 3AN (A=Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt), Phys. Rev. B 100(9) (2019), p. 094426.
  • X. Zhou, J.-P. Hanke, W. Feng, F. Li, G.-Y. Guo, Y. Yao, S. Blügel, and Y. Mokrousov, Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn 3XN with X=Ga, Zn, Ag or Ni, Phys. Rev. B 99(10) (2019), p. 104428.
  • I. Samathrakis and H. Zhang, Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn 3GaN, Phys. Rev. B 101(21) (2020), p. 214423.
  • K. Takenaka and H. Takagi, Zero thermal expansion in a pure-form antiperovskite manganese nitride, Appl. Phys. Lett. 94(13) (2009), p. 131904.
  • D. Matsunami, A. Fujita, K. Takenaka, and M. Kano, Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn 3GaN, Nat. Mater. 14(1) (2015), pp. 73–78.
  • P. Lukashev, R.F. Sabirianov, and K. Belashchenko, Theory of the piezomagnetic effect in Mn-based antiperovskites, Phys. Rev. B 78(18) (2008), p. 184414.
  • I. Samathrakis and H. Zhang. Piezospintronic effect in antiperovskite Mn 3GaN, preprint (2019). Available at arXiv:1905.11798.
  • C. Wang, L. Chu, Q. Yao, Y. Sun, M. Wu, L. Ding, J. Yan, Y. Na, W. Tang, G. Li, Q. Huang, and J.W. Lynn, Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn 3(Zn, M) x N(M=Ag, Ge), Phys. Rev. B 85(22) (2012), p. 220103.
  • K. Takenaka and H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl. Phys. Lett. 87(26) (2005), p. 261902.
  • Z. Liqiang, W. Daolian, T. Jie, L. Wen, W. Wei, H. Rongjin, and L. Laifeng, Sn-doped Mn 3GaN negative thermal expansion material for space applications, Rare Metal Mater. Eng. 43(6) (2014), pp. 1304–1307.
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. matter 21(39) (2009), p. 395502.
  • P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter 29(46) (2017), pp. 465901.
  • thermo_pw is an extension of the Quantum ESPRESSO (QE) package. Available from http://qeforge.qeforge.org/gf/project/thermo_pw/
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18) (1996), pp. 3865–3868.
  • D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41(11) (1990), pp. 7892–7895.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12) (1976), pp. 5188–5192.
  • M. Methfessel and A. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40(6) (1989), pp. 3616–3621.
  • N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21(6) (1953), pp. 1087–1092.
  • F. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA30(9) (1944), pp. 244–247.
  • J. Zemen, E. Mendive-Tapia, Z. Gercsi, R. Banerjee, J. Staunton, and K. Sandeman, Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory, Phys. Rev. B 95(18) (2017), p. 184438.
  • E. Bertaut, D. Fruchart, J. Bouchaud, and R. Fruchart, Diffraction neutronique de Mn 3GaN, Solid State Commun. 6(5) (1968), pp. 251–256.
  • M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford: Clarendon, 1954.
  • M. Özduran, Investigation of structural, electronic, elastic and phonon properties of cubic spinel ZnM 2O 4 (M=Co, Rh and Ir) compounds, Chin. J. Phys. 59 (2019), pp. 49–57.
  • W. Voigt, Lehrbuch der Kristallphysik, Teubner-Verlag, Leipzig, 1928.
  • A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, ZAMM 9(1) (1929), pp. 49–58.
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65(5) (1952), pp. 349–354.
  • W. Zhang, Y. Liu, Y. Zhou, W.-Y. Ching, Q. Li, W. Li, J. Yang, and B. Liu, Anti-perovskite carbides and nitrides A3BX: a new family of damage tolerant ceramics, J. Mater. Sci. Technol. 40 (2020), pp. 64–71.
  • S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367) (1954), pp. 823–843.
  • I. N. Frantsevich, F. F. Voronov, and S. A. BokutaElastic Constants and Elastic Moduli of Metals and Insulators Handbook, I. N. Frantsevich, eds., Naukova Dumka, Kiev, Ukraine, 1983. pp. 60–180.
  • K. Bencherif, A. Yakoubi, N. Della, O.M. Abid, H. Khachai, R. Ahmed, R. Khenata, S.B. Omran, S. Gupta, and G. Murtaza, First principles investigation of the elastic, optoelectronic and thermal properties of XRuSb: (X = V, Nb, Ta) semi-heusler compounds using the mBJ exchange potential, J. Electron. Mater. 45(7) (2016), pp. 3479–3490.
  • S.A. Dar, V. Srivastava, U.K. Sakalle, V. Parey, and G. Pagare DFT investigation on electronic, magnetic, mechanical and thermodynamic properties under pressure of some EuMO3 (M= Ga, In) perovskites}. Mater. Sci. Eng. B 236 (2018), pp. 217–224.
  • A. T. Petit and P. L. Dulong, Recherches sur QuelquesPoints Importants de la Théorie de la Chaleur,” Annalesde Chimie et de Physique, Vol. 10, pp. 395-413. Paris/france.1819.
  • N.D. Mermin and N.W. Ashcroft, Solid State Physics, Vol. 120, Saunders College, Philadelphia, 1976.
  • A. Azouaoui, M. El Haoua, S. Salmi, A. El Grini, N. Benzakour, A. Hourmatallah, and K. Bouslykhane, Structural, electronic, and magnetic properties of Mn 4N perovskite: density functional theory calculations and Monte Carlo study, J. Supercond. Nov. Magn. 33 (2019), pp. 1507–1512.
  • X. Zhang, Q. Yuan, T. Gao, Y. Ren, H. Wu, Q. Huang, J. Zhao, X. Wang, Y. Yuan, C. Xu, Y. Hu, J.J. Dynes, J. Zhou, S. Zhou, Y. Liu, and B. Song, et al., Transition from antiferromagnetic ground state to robust ferrimagnetic order with Curie temperatures above 420 K in manganese-based antiperovskite-type structures, J. Mater. Chem. C 6(48) (2018), pp. 13336–13344.
  • E.M. Tapia, J. Zemen, G. Zsolt, R. Banerjee, C.E. Patrick, J.B. Staunton, and K.G. Sandeman, Danish Days on Caloric Materials and Devices, p. 26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.