205
Views
3
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

High temperature and pressure study on structural and thermophysical properties of Co2XAl (X = Zr, Nb, Hf) Heusler materials by density functional theory calculations

ORCID Icon & ORCID Icon
Pages 1654-1678 | Received 27 Jul 2020, Accepted 18 Dec 2020, Published online: 05 May 2021

References

  • M. Belkhouane, S. Amari, A. Yakoubi, A. Tadjer, S. Méçabih, G. Murtaza, S.B. Omran and R. Khenata, First-principles study of the electronic and magnetic properties of Fe2MnAl, Fe2MnSi and Fe2MnSi0.5Al0.5. J. Magn. Magn. Mater. 377 (2015), pp. 211–214.
  • H. Rached, D. Rached, R. Khenata, A.H. Reshak and M. Rabah, First-principles calculations of structural, elastic and electronic properties of Ni2MnZ (Z = Al, Ga and In) Heusler alloys. Phys. Status Solidi B 246 (2009), pp. 1580–1586.
  • S.A. Sofi, S. Yousuf and D.C. Gupta, Prediction of robustness of electronic, magnetic and thermoelectric properties under pressure and temperature variation in Co2MnAs alloy. Comput. Condens. Matter 16 (2019), pp. e00375.
  • F. Claudia, W. Lukas, C. Stanislav, H.F. Gerhard and S.P.P. Stuart, Basics and prospective of magnetic Heusler compounds. APL Mater. 3 (2015), pp. 041518.
  • Z. Bai, L. Shen, G. Han and Y.P. Feng, Data storage: review of Heusler compounds. Spin 2 (2012), pp. 1230006.
  • T. Endoh and H.A. Honjo, Recent progress of spintronic devices for integrated circuit applications. J. Low Power Electron. Appl. 8 (2018), pp. 44.
  • L. Boumia, F. Dahmane, B. Doumi, D.P. Rai, S.A. Khandy, H. Khachai, H. Meradji, A.H. Reshak and R. Khenata, Structural, electronic and magnetic properties of new full Heusler alloys Rh2CrZ (Z = Al, Ga, In): first-principles calculations. Chin. J. Phys. 59 (2019), pp. 281–290.
  • F. Dahmane, D. Mesri, A. Tadjer, R. Khenata, S. Benalia, L. Djoudi, B. Doumi, L. Boumia and H. Aourag, Electronic structure, magnetism and stability of Co2CrX (X=Al, Ga, In) ab initio study. Mod. Phys. Lett. B 30 (2016), pp. 1550265.
  • O. Amrich, M.E.A. Monir, H. Baltach, S.B. Omran, X.W. Sun, X. Wang, Y. Al-Douri, A. Bouhemadou and R. Khenata, Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J Supercond. Nov. Magn. 31(1) (2018), pp. 241–250.
  • J.M. Teresa, A. Barthelemy, A. Fert, J.P. Contour, F. Montaigne and P. Seneor, Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions. Science 286 (1999), pp. 507–509.
  • D. Pantel, S. Goetze, D. Hesse and M. Alexe, Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 11 (2012), pp. 289–293.
  • S.A. Sofi and D.C. Gupta, Investigation of structural, elastic, thermophysical, magneto-electronic, and transport properties of newly tailored Mn-based Heuslers: A density functional theory study. Int. J. Quantum. Chem. 120 (2020), pp. e26216.
  • R. Bala, DFT based study of structural and magnetic properties of full-Heusler compounds. Mater. Today 3 (2016), pp. 1840.
  • S. Yousuf and D.C. Gupta, Insight into half-metallicity, spin-polarization and mechanical properties of L21 structured MnY2Z (Z=Al, Si, Ga, Ge, Sn, Sb) Heusler alloys. J. Alloy Compd. 735 (2018), pp. 1245–1252.
  • E. Şaşıoğlu, I. Galanakis, L.M. Sandratskii and P. Bruno, Stability of ferromagnetism in the half-metallic pnictides and similar compounds: a first-principles study. J. Phys. Condense. Matter 17(25) (2005), pp. 3915–3930.
  • W.H. Xie, B.G. Liu and D.G. Pettifor, Half-metallic ferromagnetism in transition metal pnictides and chalcogenides with wurtzite structure. Phys. Rev. B 68(13) (2003), pp. 134407.
  • M. Pénicaud, B. Silberchoit, C.B. Sommers and J. Kübler, Calculated electronic band structure and magnetic moments of ferrites. J. Magn. Magn. Mater. 103 (1992), pp. 212.
  • M. Bibes and A. Barthélémy, Oxide spintronics. IEEE Trans. Electron Devices 54 (2007), pp. 1003–1023.
  • S.A. Khandy, S.A. Sofi, S. Yousuf, T.M. Bhat, M. Nabi, S. Singh, Z. Saleem, S.A. Mir, A.Q. Seh and D.C. Gupta, Investigation of magneto-electronic properties of double perovskite Ba2ZnReO6. AIP Conf. Proc. 2115 (2019), pp. 030492.
  • de Groot RA, Mueller FM, van EPG & Buschow KHJ, New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 50 (1983), pp. 2024.
  • S. Wurmehl, G.H. Fecher and H.C. Kandpal, Geometric, electronic, and magnetic structure ofCo2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B 72(18) (2005), pp. 184434.
  • I. Galanakis and E. Sasıoglu, High TC half-metallic fully compensated ferrimagnetic Heusler compound. Appl. Phys. Lett. 99(5) (2011), pp. 052509.
  • M. Zhang, E. Bruck, F.d. Boer, Z. Li and G. Wu, The magnetic and transport properties of the Co2FeGa Heusler alloy. J. Phys. D: Appl. Phys. 37 (2004), pp. 2049–2053.
  • T. Graf, C. Felser and S.S.P. Prog, Simple rules for the understanding of Heusler compounds. Solid State Chem. 39(1) (2011), pp. 1–50.
  • I. Galanakis, P.H. Dederichs and N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66 (2002), pp. 174429.
  • S. Amari, F. Dahmane, S.B. Omran, B. Doumi and R. Khenata, Theoretical investigation of the structural, magnetic and band structure characteristics of Co2FeGe1−xSix (x = 0, 0.5, 1) full-Heusler alloys. J. Korean Phys. Soc. 69 (2016), pp. 1462–1468.
  • S.B. Riffat and X. Ma, Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 23(8) (2003), pp. 913–935.
  • S.A. Sofi and D.C. Gupta, Exploration of electronic structure, mechanical stability, magnetism, and thermophysical properties of L21 structured Co2XSb (X = Sc and Ti) ferromagnets. Int. J. Energy Res. 44 (2019), pp. 1–13.
  • L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321 (2008), pp. 1457–1461.
  • L. Hongzhi, Z. Zhiyong, M. Li, X. Shifeng, L. Heyan, J. Qu, L. Yangxian and G. Wu, Electronic structure and magnetic properties of Fe2YSi (Y = Cr, Mn, Fe, Co, Ni) Heusler alloys: a theoretical and experimental study. J. Phys. D: Appl. Phys. 40 (2007), pp. 7121–7127.
  • M. Sharma, A. Das and B.K. Kunan, Co-based full Heusler alloy nanowires: Modulation of static and dynamic properties through deposition parameters. AIP. Adv. 9 (2019), pp. 125054.
  • X.J.L. Zhang, Y.J. Zhang, H.Y. Liu, G.D. Liu, Y.T. Cui and X.Q. Ma, Theoretical and experimental study of the phase formation for Ti2YAl and Ti2Y′Ga (Y = Co, Fe; Y′ = Cr, Fe). Intermetallics 73 (2016), pp. 26–30.
  • Y. Li, H. Yuan, J. Xia, G. Zhang, M. Zhong, A. Kuaug, G.Z. Wang and H. Chen, First-principles study on structural, electronic, elastic and thermodynamic properties of the full-Heusler alloys Co2YZ (Y=Sc, Cr and Z=Al, Ga). Eur. Phys. J. Appl. Phys. 70 (2015), pp. 31001.
  • M.P. Geisler, M.J. Meinert, G.R. Schmalhorst and E. Arenholz, Multiple phases in sputtered Cr2CoGa films. J. Alloys Compd. 598 (2014), pp. 213–216.
  • R. Knut, P. Svedlindh, O. Mrvasov, K. Gunnarsson, P. Warnicke, D.A. Arena, M. Bjorck, A.J. Dennison, A. Sahoo, S. Mukherjee and D.D. Sarma, Interface characterization of Co2MnGe/Rh2CuSn Heusler multilayers. Phys. Rev. B: Condens. Matter Mater. Phys. 88(13) (2013), pp. 134407.
  • S. Mizukami, D. Watanabe, M. Oogane, Y. Ando, Y. Miura, M. Shirai and T. Miyazaki, Low damping constant for Co2FeAl Heusler alloy films and its correlation with density of states. J. Appl. Phys. 105(7) (2009), pp. 07D306.
  • V. Asvini, G. Saravanan, R.K. Kalaiezhily, M.M. Raja and K. Ravichandran, Effect of film thickness on soft magnetic behaviour of Fe2CoSi Heusler alloy for spin transfer torque device applications. AIP Conf. Proc. 1942 (2018), pp. 130051.
  • H.G. Zhang, C.Z. Zhang, W. Zhu, E.K. Liu, W.H. Wang, H.W. Zhang, J.L. Cheng, H.Z. Luo and G.H. Wu, Significant disorder-induced enhancement of the magnetization of Fe2CrGa by ball mining. J. Appl. Phys. 114(1) (2013), pp. 013903.
  • W.H. Wang, M. Przybylski, W. Kuch, L.I. Chelaru, J. Wang, Y.F. Lu and J. Kirschner, Magnetic properties and spin polarization of Co2MnSi Heusler alloy thin films epitaxially grown on GaAs (001). Phys. Rev. B: Condens. Matter Mater. Phys. 71(14) (2005), pp. 144416.
  • Li T, Duan J, Yang C & Kou X, Synthesis, microstructure and magnetic properties of Heusler Co2FeSn nanoparticles. Micro Nano Lett. (2013); 8:143–146.
  • U. Geiersbach, A. Bergmann and K. Westerholt, Structural, magnetic and magneto-transport properties of thin films of the Heusler alloys Cu2MnAl, Co2MnSi, Co2MnGe and Co2MnSn. J Magn. Magn. Mater. 240(1–3) (2002), pp. 546–549.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz and K. Schwarz, WIEN2K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, 2001.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys and A.P. Sutton, Electron-energy–loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57 (1998), pp. 1505–1509.
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Phys. Rev. Lett. 102 (2009), pp. 226401.
  • M. Jamal, S.J. Asadabadi, I. Ahmad and H.A.R. Aliabad, Elastic constants of cubic crystals. Comput. Mater. Sci. 95 (2014), pp. 592–599.
  • G.K.H. Madsen, D.J. Singh and P. BoltzTra, A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175 (2006), pp. 67–71.
  • M.A. Blanco, E. Francisco and V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasiharmonic Debye model. Phys. Commun. 158 (2004), pp. 57–72.
  • F. Brich, The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan's theory of finite strain. J. Appl. Phys. 9 (1938), pp. 279–288.
  • S. De SD and R.N. Saxena, Magnetic hyperfine fields in Heusler alloys Co YZ (Y = Ti,Zr; Z = AI,Ga,Sn). Hyperfine Interact. 34 (1987), pp. 431–434.
  • T. Kanomataa, T. Sasakia, H. Nishiharab, H. Yoshidac, T. Kanekoc, S. Haned, T. Gotod, N. Takeishie and S. Ishidae, Magnetic properties of ferromagnetic Heusler alloy Co2ZrAl. J. Alloy Compd. 393 (2005), pp. 26–33.
  • H.C. Kandpal, G.H. Fecher and C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D: Appl. Phys. 40 (2007), pp. 1507–1523.
  • K.H.J. Buschow, P.v. Engen and R. Jongebreur, Magneto-optical properties of metallic ferromagnetic materials. J. Magn. Magn. Mater 38 (1983), pp. l–22.
  • V.Y. Markiv, Y.V. Voroshilov, P.I. Kripyakevich and E.E. Cherkashin, Calculated properties of ferromagnetic materials. J. Magn. Magn. Mater. 38 (1983), pp. 1–22.
  • K. Tanaka and M. Koiwa, Single-crystal elastic constants of intermetallic compounds. Intermetallic 4 (1996), pp. S29–S39.
  • F. Mouhat and F.X. Coudert, Necessary and sufcient elastic stability conditions in various crystal systems. Phys. Rev. B90 (2014), pp. 224104.
  • S.A. Sofi and D.C. Gupta, Investigation of high pressure and temperature study of thermophysical properties in semiconducting Fe2ZrSi Heusler. Phys. B Condens. Matter 577 (2020), pp. 411792.
  • A. Reuss and Z. Angew, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Math. Mech. 9 (1929), pp. 49.
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 65 (1952), pp. 349–354.
  • S.A. Khandy and D.C. Gupta, Magneto-electronic, elasto-mechanical, thermoelectric and thermodynamic properties of ductile perovskite Ba2SmNbO6. Mater. Chem. Phys. 239 (2020), pp. 121983.
  • I.N. Frantsevich, F.F. Voronov and S.A. Bokuta, Elastic constants and elastic moduli of metals and insulators, in Frantsevich I.N., ed., Naukova Dumka, Kiev, 1983. 60: pp. 180.
  • S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45 (1954), pp. 823.
  • S.A. Sofi, S. Yousuf, T.M. Bhat, M. Nabi, S. Singh, Z. Saleem, S.A. Mir, S.A. Khandy, A.Q. Seh and D.C. Gupta, Investigation of structural and mechanical properties of ferromagnetic Co2MnAs compound. AIP Conf. Proc. 2115 (2019), pp. 030349.
  • S.A. Mir and D.C. Gupta, Understanding the origin of half-metallicity and thermo-physical properties of ductile La2CuMnO6 double perovskite. Int. J. Energy Res. 43 (2019), pp. 4783–4796.
  • Y. Mogulkoc, Y.O. Ciftci, M. Kabak and K. Colakoglu, First-principles study of structural, elastic and electronic properties of NdTe2 and TlNdTe2. Sci. J. 34 (2013), pp. 3.
  • M.E. Fine, L.D. Brown and H.L. Marcus, Elastic constants versus melting temperature in metals. Scr. Metall. 18 (1984), pp. 95–98.
  • A.Q. Seh and D.C. Gupta, Exploration of highly correlated co-based quaternary Heusler alloys for spintronics and thermoelectric applications. Int. J. Energy Res. 43 (2019), pp. 1–14.
  • S.A. Sofi and D.C. Gupta, Systematic study of ferromagnetic phase stability of co-based Heusler materials with high figure of merit: hunt for spintronics and thermoelectric applicability. AIP. Adv. 10 (2020), pp. 105330.
  • F. Peng, F. Hongzhi and X. Yang, Ab initio study of phase transition and thermodynamic properties of PtN. Phys. B. Condens. Matter 403 (2008), pp. 2851–2855.
  • J. He and T.M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward. Science 357 (2017), pp. eaak9997.
  • R.A. Kishore, A. Marin, C. Wu, A. Kumar and S. Priya, Energy Harvesting—Materials, Physics, and System Design with Practical Examples, DE Stech Publications, Lancaster, 2019.
  • H.J. Goldsmid, Introduction to Thermoelectricity, Springer, Berlin/Heidelberg, Germany, 2010.
  • G.J. Snyder and E. Toberer, Complex thermoelectric materials. Nat. Mater 7 (2008), pp. 105–114.
  • S.A. Khandy and D.C. Gupta, Study of ferromagnetism, spin-polarization, thermoelectrics and thermodynamics of layered perovskite Ba2FeMnO6 under pressure and temperature. J. Phys. Chem. Solids 135 (2019), pp. 109079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.