229
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Finite element simulation of the Portevin–Le Chatelier effect in highly reinforced metal matrix composites

, &
Pages 1471-1489 | Received 03 Feb 2020, Accepted 21 Dec 2020, Published online: 05 May 2021

References

  • A. Le Chatelier, Influence du temps et de la température sur les essais au choc, Rev. Métall.6 (1909), pp. 914–917.
  • A. Cottrell and B. Bilby, Dislocation theory of yielding and strain ageing of Iron, Proc. Phys. Soc. A62 (1949), pp. 49–62.
  • A. Portevin and F. Le Chatelier, Sur le phénomène observé lors de l'essai de traction d'alliages en cours de transformation, Comp. Rend. l'Acad. Sci. 176 (1923), pp. 507–510.
  • R. De Codes and A. Benallal, Influence of specimen geometry on the Portevin–Le Chatelier effect due to dynamic strain aging for the AA5083-h116 aluminum alloy, J. Mech. Mater. Struct. 6 (2011), pp. 951–968, 11th Pan-American Congress of Applied Mechanics (PACAM)/48th Meeting of the Society-for-Natural-Philosophy (SNP), Foz do Iguacu, BRAZIL, JAN 04-08, 2010.
  • J. Coer, P. Manach, H. Laurent, M. Oliveira, and L. Menezes, Piobert–Lüders plateau and Portevin–Le Chatelier effect in an Al–Mg alloy in simple shear, Mech. Res. Commun. 48 (2013), pp. 1–7.
  • D. Delpueyo, X. Balandraud, and M. Grédiac, Calorimetric signature of the Portevin–Le Chatelier effect in an aluminum alloy from infrared thermography measurements and heat source reconstruction, Mater. Sci. Eng.: A 651 (2016), pp. 135–145. Available at http://www.sciencedirect.com/science/article/pii/S0921509315305153.
  • S.C. Ren, G. Rousselier, T. Morgeneyer, M. Maziére, and S. Forest, Numerical investigation of dynamic strain ageing and slant ductile fracture in a notched specimen and comparison with synchrotron tomography 3D-DVC, Proc. Struct. Integr. 2 (2016), pp. 3385–3392.
  • T. Böhlke, G. Bondar, Y. Estrin, and M. Lebyodkin, Geometrically non-linear modeling of the Portevin–Le Chatelier effect, Comput. Mater. Sci. 44 (2009), pp. 1076–1088.
  • S. Gupta, A.J. Beaudoin, Jr., and J. Chevy, Strain rate jump induced negative strain rate sensitivity (NSRS) in aluminum alloy 2024: Experiments and constitutive modeling, Mater. Sci. Eng.: A 683 (2017), pp. 143–152. Available at //www.sciencedirect.com/science/article/pii/S0921509316314927.
  • S.C. Ren, T.F. Morgeneyer, M. Mazière, S. Forest, and G. Rousselier, Portevin–Le Chatelier effect triggered by complex loading paths in an Al–Cu aluminium alloy, Phil. Mag. 99 (2019), pp. 659–678.
  • B. Reyne, P.Y. Manach, and N. Moës, Macroscopic consequences of Piobert–Lüders and Portevin–Le Chatelier bands during tensile deformation in Al–Mg alloys, Mater. Sci. Eng.: A 746 (2019), pp. 187–196.
  • H. Dierke, F. Krawehl, S. Graff, S. Forest, J. Sach, and H. Neuhäuser, Portevin–Le Chatelier effect in Al–Mg alloys: Influence of obstacles – experiments and modelling, Comput. Mater. Sci. 39 (2007), pp. 106–112.
  • S. Graff, H. Dierke, S. Forest, H. Neuhäuser, and J.L. Strudel, Finite element simulations of the Portevin–Le Chatelier effect in metal-matrix composites, Phil. Mag. 88 (2008), pp. 3389–3414.
  • A. Benallal, T. Berstad, T. Borvik, O. Hopperstad, I. Koutiri, and R. Nogueira de Codes, An experimental and numerical investigation of AA5083 aluminium alloy in presence of the Portevin–Le Chatelier effect, Int. J. Plast. 24 (2008), pp. 1916–1945.
  • M. Mazière and H. Dierke, Investigations on the Portevin–Le Chatelier critical strain in an aluminum alloy, Comput. Mater. Sci. 52 (2012), pp. 68–72.
  • R. Schwarz and L. Funk, Kinetics of the Portevin–Le Chatelier effect in Al 6061 alloy, Acta Metall. 33 (1985), pp. 295–307. Available at http://www.sciencedirect.com/science/article/pii/0001616085901488.
  • M. Härtel, C. Illgen, P. Frint, and M.F.X. Wagner, On the PLC effect in a particle reinforced AA2017 alloy, Metals 8 (2018), p. 88.
  • A. Miserez and A. Mortensen, Fracture of aluminium reinforced with densely packed ceramic particles: Influence of matrix hardening, Acta Mater. 52 (2004), pp. 5331–5345.
  • A. Miserez, R. Müller, and A. Mortensen, Increasing the strength/toughness combination of high volume fraction particulate metal matrix composites using an Al–Ag matrix alloy, Adv. Eng. Mater.8 (2006), pp. 56–62.
  • Y. Estrin and M. Lebyodkin, The influence of dispersion particles on the Portevin–Le Chatelier effect: From average particle characteristics to particle arrangement, Mater. Sci. Eng. A 387 (2004), pp. 195–198, 13th International Conference on the Strength of Materials (ICSMA 13), Budapest, HUNGARY, AUG, 2003.
  • M. Lebyodkin and Y. Estrin, Multifractal analysis of the Portevin–Le Chatelier effect: General approach and application to AlMg and AlMg/Al 2O 3 alloys, Acta Mater. 53 (2005), pp. 3403–3413.
  • S. Lee, S.J. Lee, S.S. Kumar, K. Lee, and B.C. De Cooman, Localized deformation in multiphase, ultra-fine-grained 6 Pct Mn transformation-induced plasticity steel, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 42A (2011), pp. 3638–3651, Symposium on Austenite Formation and Decomposition IV, Houston, TX, Oct 17–21, 2010.
  • S. Lee and B.C. De Cooman, Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. A 45 (2014), pp. 6039–6052.
  • X. Wang, L. Wang, and M. Huang, Kinematic and thermal characteristics of Lüders and Portevin–Le Chatelier bands in a medium Mn transformation-induced plasticity steel, Acta Mater. 124 (2017), pp. 17–29. Available at //www.sciencedirect.com/science/article/pii/S1359645416308461.
  • M. Callahan, A. Perlade, and J.H. Schmitt, Interactions of negative strain rate sensitivity, martensite transformation, and dynamic strain aging in 3rd generation advanced high-strength steels, Mater. Sci. Eng.: A 754 (2019), pp. 140–151.
  • Y. Brechet and Y. Estrin, On a pseudo-Portevin–Le Chatelier effect, Scr. Metall. Mater. 31 (1994), pp. 185–190.
  • Y. Brechet and Y. Estrin, On the influence of precipitation on the Portevin–Le Chatelier effect, Acta Metall. Mater. 43 (1995), pp. 955–963.
  • D. Thevenet, M. Mliha-Touati, and A. Zeghloul, The effect of precipitation on the Portevin–Le Chatelier effect in an Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 266 (1999), pp. 175–182.
  • D. Thevenet, M. Mliha-Touati, and A. Zeghloul, Characteristics of the propagating deformation bands associated with the Portevin–Le Chatelier effect in an Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 291 (2000), pp. 110–117.
  • L.P. Kubin and Y. Estrin, The Portevin–Le Chatelier effect in deformation with constant stress rate, Acta Metall. 33 (1985), pp. 397–407.
  • P. McCormick, Theory of flow localization due to dynamic strain ageing, Acta Metall. 36 (1988), pp. 3061–3067.
  • M. Maziére, J. Besson, S. Forest, B. Tanguy, H. Chalons, and F. Vogel, Numerical aspects in the finite element simulation of the Portevin–Le Chatelier effect, Comput. Meth. Appl. Mech. Eng. 199 (2010), pp. 734–754.
  • R.H. Song, H.L. Qin, Z.N. Bi, J. Zhang, H. Chi, E. Busso, and D.F. Li, Experimental and numerical investigations of dynamic strain ageing behaviour in solid solution treated Inconel 718 superalloy, Eng. Comput., preprint (2020).
  • B. Klusemann, G. Fischer, T. Boehlke, and B. Svendsen, Thermomechanical characterization of Portevin–Le Chatelier bands in AlMg 3 (AA5754) and modeling based on a modified Estrin–McCormick approach, Int. J. Plast. 67 (2015), pp. 192–216.
  • L. Mansouri, J. Coër, S. Thuillier, H. Laurent, and P.Y. Manach, Investigation of Portevin–Le Chatelier effect during Erichsen test, Int. J. Mater. Form. 13 (2020), pp. 687–697.
  • M. Marchenko, M. Mazière, S. Forest, and J.L. Strudel, Crystal plasticity simulation of strain aging phenomena in alpha-titanium at room temperature, Int. J. Plast. 85 (2016), pp. 1–33.
  • S. Gupta, V. Taupin, C. Fressengeas, and J. Chevy, Crystal plasticity modeling of the effects of crystal orientation and grain-to-grain interactions on DSA-induced strain localization in Al–Li alloys, Materialia 8 (2019), pp. 100467.
  • H. Ovri, D. Steglich, H. Dieringa, and E.T. Lilleodden, Grain-scale investigation of the anisotropy of Portevin–Le Chatelier effect in Mg AZ91 alloy, Mater. Sci. Eng. A 740–741 (2019), pp. 226–234.
  • A. Miserez, R. Müller, A. Rossoll, L. Weber, and A. Mortensen, Particle reinforced metals of high ceramic content, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 387 (2004), pp. 822–831.
  • A. Miserez, A. Rossoll, and A. Mortensen, Fracture of aluminium reinforced with densely packed ceramic particles: Link between the local and the total work of fracture, Acta Mater. 52 (2004), pp. 1337–1351.
  • A. Miserez, A. Rossoll, and A. Mortensen, Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites, Eng. Fract. Mech. 71 (2004), pp. 2385–2406.
  • M. Kouzeli and A. Mortensen, Size dependent strengthening in particle reinforced aluminium, Acta Mater. 50 (2002), pp. 39–51.
  • A. Mortensen, M. Kouzeli, L. Weber, and C.S. Marchi, Corrigendum to: On the tensile behaviour of infiltrated alumina particle reinforced aluminium composites, Acta Mater. 51 (2003), pp. 6493–6496.
  • T. Richeton, G.F. Wang, and C. Fressengeas, Continuity constraints at interfaces and their consequences on the work hardening of metal-matrix composites, J. Mech. Phys. Solids 59 (2011), pp. 2023–2043.
  • A. Mortensen and J. Llorca, Metal matrix composites, Ann. Rev. 40 (2010), pp. 243–270.
  • S. Puri, A. Das, and A. Acharya, Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics, J. Mech. Phys. Solids 59 (2011), pp. 2400–2417.
  • S. Zhang, P. McCormick, and Y. Estrin, The morphology of Portevin–Le Chatelier bands: Finite element simulation for Al–Mg–Si, Acta Mater. 49 (2001), pp. 1087–1094.
  • S. Graff, S. Forest, J.L. Strudel, C. Prioul, P. Pilvin, and J.L. Béchade, Strain localization phenomena associated with static and dynamic strain ageing in notched specimen: Experiments and finite element simulations, Mater. Sci. Eng. A 387 (2004), pp. 181–185.
  • A. Marchenko, M. Mazière, S. Forest, and J.L. Strudel, Crystal plasticity simulation of strain aging phenomena in alpha-titanium at room temperature, Int. J. Plast. 85 (2016), pp. 1–33.
  • J. Besson and R. Foerch, Large scale object-oriented finite element code design, Comput. Meth. Appl. Mech. Eng. 142 (1997), pp. 165–187.
  • Z-set package, Non-linear material & structure analysis suite, preprint (2013). Available at www.zset-software.com.
  • H. Ait-Amokhtar, S. Boudrahem, and C. Fressengeas, Spatiotemporal aspects of jerky flow in Al–Mg alloys, in relation with the Mg content, Scr. Mater. 54 (2006), pp. 2113–2118.
  • H. Ait-Amokhtar, C. Fressengeas, and S. Boudrahem, The dynamics of Portevin–Le Chatelier bands in an Al–Mg alloy from infrared thermography, Mater. Sci. Eng. A 488 (2008), pp. 540–546.
  • J. Besson, G. Cailletaud, J.L. Chaboche, S. Forest, and M. Blétry, Non-Linear Mechanics of Materials, Solid Mechanics and its Applications 167, Springer-Verlag, Berlin, Heidelberg, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.