202
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of Mo concentration on structural, mechanical, electronic and magnetic properties of Fe2B: a first-principles study

, &
Pages 1549-1572 | Received 31 Dec 2020, Accepted 19 Apr 2021, Published online: 05 May 2021

References

  • A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D.V. Edmonds and J.T.H. Pearce, Microstructural and crystallographical study of carbides in 30wt.%Cr cast irons. Acta Mater. 53(15) (2005), pp. 4143–4154.
  • S.Q. Ma, J.D. Xing, Y.L. He, H.G. Fu, Y.F. Li and G.Z. Liu, Effect of orientation and lamellar spacing of Fe2B on interfaces and corrosion behavior of Fe-B alloy in hot-dip galvanization. Acta Mater. 115 (2016), pp. 392–402.
  • D.I. Uhlenhaut, J. Kradolfer, W. Puttgen, J.F. Loffler and P.J. Uggowitzer, Structure and properties of a hypoeutectic chromium steel processed in the semi-solid state. Acta Mater. 54(10) (2006), pp. 2727–2734.
  • X.Y. Chong, M.Y. Hu, P. Wu, Q. Shan, Y.H. Jiang, Z.L. Li and J. Feng, Tailoring the anisotropic mechanical properties of hexagonal M7X3 (M = Fe, Cr, W, Mo; X = C, B) by multialloying. Acta Mater. 169 (2019), pp. 193–208.
  • B. Xiao, J.D. Xing, J. Feng, C.T. Zhou, Y.F. Li, W. Su, X.J. Xie and Y.H. Cheng, A comparative study of Cr7C3, Fe3C and Fe2B in cast iron both from ab initio calculations and experiments. J. Phys. D-Appl. Phys 42(11) (2009), pp. 115415.
  • L.J. Xu, S.Z. Wei, F.N. Xiao, H. Zhou, G.S. Zhang and J.W. Li, Effects of carbides on abrasive wear properties and failure behaviours of high speed steels with different alloy element content. Wear 376 (2017), pp. 968–974.
  • X.Y. Chong, P.-W. Guan, M.Y. Hu, Y.H. Jiang, Z.L. Li and J. Feng, Exploring accurate structure, composition and thermophysical properties of ƞ carbides in 17.90 wt% W-4.15 wt% Cr-1.10 wt% V-0.69 wt% C steel. Scripta Mater 154 (2018), pp. 149–153.
  • Y. Pan, D.L. Pu and E.D. Yu, Structural, electronic, mechanical and thermodynamic properties of Cr-Si binary silicides from first-principles investigations. Vacuum 185 (2021), pp. 110024.
  • Y. Pan, D. Pu, G. Liu and P. Wang, Influence of alloying elements on the structural stability, elastic, hardness and thermodynamic properties of Mo5SiB2 from first-principles calculations. Ceram. Int. 46(10) (2020), pp. 16605–16611.
  • Y. Pan and D. Pu, First-principles investigation of oxidation behavior of Mo5SiB2. Ceram. Int. 46(5) (2020), pp. 6698–6702.
  • Z.L. Liu, Y.X. Li, X. Chen and K.H. Hu, Microstructure and mechanical properties of high boron white cast iron. Mater. Sci. Eng. A 486(1-2) (2008), pp. 112–116.
  • B. Xiao, J.D. Xing, S.F. Ding and W. Su, Stability, electronic and mechanical properties of Fe2B. Physica B 403(10–11) (2008), pp. 1723–1730.
  • D.J. Joyner, O. Johnson, D.M. Hercules, D.W. Bullett and J.H. Weaver, Study of the iron borides. IV. relation of bonding to structure and magnetic behavior from photoemission experiments and ab initio calculations. Phys. Rev. B 24(6) (1981), pp. 3122–3137.
  • H. Fu, Q. Zhou and Z. Jiang, A study of the quenching structures of Fe-B-C alloy. Materialwiss. Werkst 38(4) (2007), pp. 299–302.
  • X.A. Chen and Y.X. Li, Effect of heat treatment on microstructure and mechanical properties of high boron white cast iron. Mater. Sci. Eng. A 528(2) (2010), pp. 770–775.
  • H.G. Fu, Q. Xiao, J.C. Kuang, Z.Q. Jiang and J.D. Xing, Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel. Mater. Sci. Eng. A 466(1-2) (2007), pp. 160–165.
  • D.W. Yi, J.D. Xing, H.G. Fu, S.Q. Ma and Z.X. Liu, Effect of rare earth-Al additions on the structural variations of medium carbon Fe-B cast alloy. Key Eng. Mater 457 (2011), pp. 213–218.
  • L. He, Y. Liu, J. Li and B.H. Li, Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe-B alloys. Mater. Des 36 (2012), pp. 88–93.
  • J.J. Zhang, Y.M. Gao, J.D. Xing, X.W. Wei, S.Q. Ma and B.H. Che, Effect of hot forging on microstructure and abrasion resistance of Fe-B alloy. Tribol. Trans. 56(3) (2013), pp. 461–468.
  • F. Li and Z.H. Li, Study on improvement of hard phase morphology and properties of hypoeutectic Fe-C-B alloy. J. Alloy. Compd. 587 (2014), pp. 267–272.
  • C. Badini, C. Gianoglio and G. Pradelli, The effect of carbon, chromium and nickel on the hardness of borided layers. Surf. Coat. Technol. 30(2) (1987), pp. 157–170.
  • Y.A. Balandin, Surface hardening of die steels by diffusion boronizing, borocopperizing, and borochromizing in fluidized bed. Met. Sci. Heat Treat. 47(3–4) (2005), pp. 103–106.
  • A.H. Üçisik and C. Bindal, Fracture toughness of boride formed on low-alloy steels. Surf. Coat. Technol 94-95 (1997), pp. 561–565.
  • S.Q. Ma, J.D. Xing, G.F. Liu, D.W. Yi, H.G. Fu, J.J. Zhang and Y.F. Li, Effect of chromium concentration on microstructure and properties of Fe-3.5B alloy. Mater. Sci. Eng. A 527(26) (2010), pp. 6800–6808.
  • Z.F. Huang, J.D. Xing and C. Guo, Improving fracture toughness and hardness of Fe2B in high boron white cast iron by chromium addition. Mater. Des. 31(6) (2010), pp. 3084–3089.
  • Y.X. Jian, Z.F. Huang, J.D. Xing and Y.M. Gao, Effects of chromium on the morphology and mechanical properties of Fe2B intermetallic in Fe-3.0B alloy. J. Mater. Sci. 53(7) (2018), pp. 5329–5338.
  • J. Lentz, A. Röttger, F. Großwendt and W. Theisen, Enhancement of hardness, modulus and fracture toughness of the tetragonal (Fe,Cr)2B and orthorhombic (Cr,Fe)2B phases with addition of Cr. Mater. Des. 156 (2018), pp. 113–124.
  • Y.X. Jian, Z.F. Huang, J.D. Xian, L. Sun, Y.M. Gao and Q.L. Zheng, Investigations on the mechanical properties and three-body wear behavior of pure Fe2B intermetallic with different chromium additions. Wear 418 (2019), pp. 273–280.
  • X.M. Pang, Y. Zheng, S.G. Wang and Q.H. Wang, Effects of Mn on structure and mechanical properties of Mo2FeB2-based cermets. Chinese J. Nonferrous Met. 19(09) (2009), pp. 1618–1624. (in Chinese).
  • Y.X. Jian, Z.F. Huang, J.D. Xing, X.Z. Guo, Y. Wang and Z. Lv, Effects of Mn addition on the two-body abrasive wear behavior of Fe-3.0 wt% B alloy. Tribol. Int. 103 (2016), pp. 243–251.
  • Z.F. Huang, J.D. Xing and X. Tao, Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe-B-C cast alloy. Int. J. Mater. Res. 103(12) (2012), pp. 1539–1543.
  • Y.X. Jian, Z.F. Huang, J.D. Xing, X.X. Guo and K. Jiang, Effect of molybdenum addition on mechanical properties of oriented bulk Fe2B crystal. J. Mater. Res. 32(9) (2017), pp. 1718–1726.
  • Y. Yi, J. Xing, X. Ren, H. Fu, Q. Li and D. Yi, Investigation on abrasive wear behavior of Fe-B alloys containing various molybdenum contents. Tribol. Int. 135 (2019), pp. 237–245.
  • Z.G. Chen, S. Miao, L.N. Kong, X. Wei, F.H. Zhang, and H.B. Yu, Effect of Mo concentration on the microstructure evolution and properties of high boron cast steel. Materials. (Basel) 13(4) (2020), pp. 975.
  • Y.L. Yi, J.D. Xing, M.J. Wan, L.L. Yu, Y.F. Lu and Y.X. Jian, Effect of Cu on microstructure, crystallography and mechanical properties in Fe-B-C-Cu alloys. Mater. Sci. Eng. A 708 (2017), pp. 274–284.
  • Y.L. Yi, J.D. Xing, Y.F. Lu, Y.M. Gao, H.G. Fu, L.L. Yu, M.J. Wan and Q.L. Zheng, Effect of normal load on two-body abrasive wear of an Fe-B-Cr-C based alloy with minor Cu and Ni additions. Wear 408 (2018), pp. 160–170.
  • Z.F. Huang, J.D. Xing and L.L. Lv, Effect of tungsten addition on the toughness and hardness of Fe2B in wear-resistant Fe-B-C cast alloy. Mater. Charact. 75 (2013), pp. 63–68.
  • Z.F. Huang, L. Chang, Z.W. Liu and Q.L. Zheng, Effect of toughening Fe2B by the addition of tungsten on the wear resistance of Fe-B-C alloy. Int. J. Mater. Res. 108(5) (2017), pp. 424–426.
  • G. Wang, Y. Jiang, Z. Li, X. Chong and J. Feng, Balance between strength and ductility of dilute Fe2B by high-throughput first-principles calculations. Ceram. Int. 47(4) (2021), pp. 4758–4768.
  • X. Wei, Z.G. Chen, J. Zhong, L. Wang, W. Yang and Y.P. Wang, Effect of alloying elements on mechanical, electronic and magnetic properties of Fe2B by first-principles investigations. Comput. Mater. Sci. 147 (2018), pp. 322–330.
  • X. Wei, Z.G. Chen, J. Zhong, L. Wang, Y.P. Wang and Z.L. Shu, First-principles investigation of Cr-doped Fe2B: structural, mechanical, electronic and magnetic properties. J. Magn. Magn. Mater 456 (2018), pp. 150–159.
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16) (1996), pp. 11169–11186.
  • S.Y. Deng, J.S. Zhao, S.B. Wei, C.Y. Zhu, J. Lv, Q. Li and W.T. Zheng, Theoretical study of electronic and mechanical properties of Fe2B. RSC Adv. 6(77) (2016), pp. 73576–73580.
  • R. Kiessling, The crystal structures of molybdenum and tungsten borides. Acta. Chem. Scand. 1(10) (1947), pp. 893–916.
  • C.T. Zhou, J.D. Xing, B. Xiao, J. Feng, X.J. Xie and Y.H. Chen, First principles study on the structural properties and electronic structure of X2B (X = Cr, Mn, Fe, Co, Ni, Mo and W) compounds. Comput. Mater. Sci 44(4) (2009), pp. 1056–1064.
  • S. Aryal, M.C. Gao, L. Ouyang, P. Rulis and W.Y. Ching, Ab initio studies of Mo-based alloys: mechanical, elastic, and vibrational properties. Intermetallics 38 (2013), pp. 116–125.
  • A.F. Bialon, T. Hammerschmidt, R. Drautz, S. Shah, E.R. Margine and A.N. Kolmogorov, Possible routes for synthesis of new boron-rich Fe–B and Fe1−xCrxB4 compounds. Appl. Phys. Lett. 98(8) (2011), pp. 081901.
  • A. Gueddouh, Magnetic moment collapse induced by high-pressure in semi-borides TM2B (TM = Fe, Co). A first-principles study. Chin. J. Phys. 56(3) (2018), pp. 944–957.
  • B. Xiao, J. Feng, C.T. Zhou, J.D. Xing, X.J. Xie, Y.H. Cheng and R. Zhou, The elasticity, bond hardness and thermodynamic properties of X2B (X = Cr, Mn, Fe, Co, Ni, Mo, W) investigated by DFT theory. Physica B 405(5) (2010), pp. 1274–1278.
  • R. Escamilla, E. Carvajal, M. Cruz-Irisson, M. Romero, R. Gomez, V. Marquina, D.H. Galvan and A. Duran, First-principles study of the structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure. J. Mol. Struct. 1125 (2016), pp. 350–357.
  • H.C. Chen, L.J. Yang and J.P. Long, First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds. Superlattices Microstruct. 79 (2015), pp. 156–165.
  • O. Beckstein, J.E. Klepeis, G.L.W. Hart and O. Pankratov, First-principles elastic constants and electronic structure of α−Pt2Si and PtSi. Phys. Rev. B 63(13) (2001), pp. 134112.
  • Y. Pan and W.M. Guan, The hydrogenation mechanism of PtAl and IrAl thermal barrier coatings from first-principles investigations. Int. J. Hydrog. Energy 45 (2020), pp. 20032–20041.
  • Y. Pan, The structural, mechanical and thermodynamic properties of the orthorhombic TMAl (TM = Ti, Y, Zr and Hf) aluminides from first-principles calculations. Vacuum 181 (2020), pp. 109742.
  • M.G. Zhang, H. Wang, H.B. Wang, T. Cui and Y.M. Ma, Structural modifications and mechanical properties of molybdenum borides from first principles. J. Phys. Chem. C 114(14) (2010), pp. 6722–6725.
  • Y. Pan, Y.H. Lin, G.H. Liu and J. Zhang, Influence of transition metal on the mechanical and thermodynamic properties of IrAl thermal barrier coating. Vacuum 174 (2020), pp. 109203.
  • Y. Pan, D.L. Pu and G.H. Liu, Influence of Mo concentration on the structure, mechanical and thermodynamic properties of Mo-Al compounds from first-principles calculations. Vacuum 175 (2020), pp. 109291.
  • Y. Tian, B. Xu and Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard. Mat. 33 (2012), pp. 93–106.
  • H. Ozisik, E. Deligoz, K. Colakoglu and H.B. Ozisik, Density functional study of the mechanical and phonon properties of Al12X (X = Mo, Tc, Ru, W, Re, and Os) compounds. Intermetallics 50 (2014), pp. 1–7.
  • X. Jiang, J. Zhao, A. Wu, Y. Bai and X. Jiang, Mechanical and electronic properties of B12-based ternary crystals of orthorhombic phase. J. Phys.-Condens. Matter 22(31) (2010), pp. 315503.
  • M.D. Teter, Computational alchemy: The search for new superhard materials. MRS Bull. 23(January) (1998), pp. 22–27.
  • K.B. Panda and K.S.R. Chandran, First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater. 54(6) (2006), pp. 1641–1657.
  • F.W. Vahldiek and S.A. Mersol, Anisotropy in single-crystal refractory compounds, Springer, US, 1968.
  • H. Zhu, L. Shi, S. Li, Y. Duan, W. Xia and Y. Wang, Influence of uniaxial strains on the mechanical properties of transition metal borides X2B, XB and XB2 (X = Cr, Mo, W). Physica B 550 (2018), pp. 100–111.
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101(5) (2008).
  • S.L. Shang, L.G. Hector, S.Q. Shi, Y. Qi, Y. Wang and Z.K. Liu, Lattice dynamics, thermodynamics and elastic properties of monoclinic Li2CO3 from density functional theory. Acta Mater. 60(13–14) (2012), pp. 5204–5216.
  • R. Gaillac, P. Pullumbi and F.X. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys.-Condens. Matter 28(27) (2016), pp. 275201.
  • Y.F. Li, Y.M. Gao, B. Xiao, T. Min, Y. Yang, S.Q. Ma and D.W. Yi, The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations. J. Alloy. Compd. 509(17) (2011), pp. 5242–5249.
  • M.S. Li, S.L. Fu, W.D. Xu, R.L. Zhang and R.H. Yu, Valence electron structure of Fe2B phase and its eigen-brittleness. Acta Metall. Sin. 31 (1995), pp. 201–208. (in Chinese).
  • L.H. Li, W.L. Wang, L. Hu and B.B. Wei, First-principle calculations of structural, elastic and thermodynamic properties of Fe-B compounds. Intermetallics 46 (2014), pp. 211–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.