205
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Glass-forming ability of Ni-Zr-Al alloys: the interplay of thermodynamic and geometric factors

, & ORCID Icon
Pages 1709-1725 | Received 14 Nov 2020, Accepted 10 May 2021, Published online: 27 May 2021

References

  • W. Klement, R.H. Willens and P. Duwez, Non-crystalline structure in solidified gold-silicon alloys. Nature 187 (1960), pp. 869–870.
  • A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48 (2000), pp. 279–306.
  • Z.P. Lu and C.T. Liu, Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91 (2003). 115505.
  • D.B. Miracle and O.N. Senkov, Topological criterion for metallic glass formation. Mat. Sci. Eng. A, 347 (2003), pp. 50–58.
  • L.-M. Wang, Y. Tian, R. Liu and W. Wang, A “universal” criterion for metallic glass formation. Appl. Phys. Lett. 100 (2012), 261913.
  • Q. Wang, C. Dong, J. Qiang and Y. Wang, Cluster line criterion and Cu-Zr-Al bulk metallic glass formation. Mat. Sci. Eng. A 449 (2007), pp. 18–23.
  • Z.P. Lu and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50 (2002), pp. 3501–3512.
  • Y.T. Sun, H.Y. Bai, M.Z. Li and W.H. Wang, Machine learning approach for prediction and understanding of glass-forming ability. J. Phys. Chem. Lett. 8 (2017), pp. 3434–3439.
  • L. Ward, S.C. O'Keeffe, J. Stevick, G.R. Jelbert, M. Aykol and C. Wolverton, A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 159 (2018), pp. 102–111.
  • G. Tarjus, S.A. Kivelson, Z. Nussinov and P. Viot, The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. J. Phys.: Condensed Matt 17 (2005), R1143.
  • L. Berthier and G. Biroli, Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys 83 (2011), pp. 587–645.
  • H. Shintani and H. Tanaka, Frustration on the way to crystallization in glass. Nature Phys. 2 (2006), pp. 200–206.
  • F. Frank and N. Mott, Supercooling of liquids. Proc. Roy. Soc. A. Math. Phys. Sci. 215 (1952), pp. 43–46.
  • Y.Q. Cheng and E. Ma, Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci 56 (2011), pp. 379–473.
  • H. Sheng, W. Luo, F. Alamgir, J. Bai and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses. Nature 439 (2006), pp. 419–425.
  • Z. Wang, L. Huang, G.Q. Yue, B. Shen, F. Dong, R.J. Zhang, Y.X. Zheng, S.Y. Wang, C.Z. Wang, M.J. Kramer, K.M. Ho and L.Y. Chen, Effects of oxygen impurities on glass-formation ability in Zr2Cu alloy. J. Phys. Chem. B 120 (2016), pp. 9223–9229.
  • B.A. Klumov, R.E. Ryltsev and N.M. Chtchelkatchev, Polytetrahedral structure and glass-forming ability of simulated Ni–Zr alloys. J. Chem. Phys. 149 (2018), 134501.
  • R.E. Ryltsev, B.A. Klumov, N.M. Chtchelkatchev and K.Y. Shunyaev, Nucleation instability in supercooled Cu–Zr–Al glass-forming liquids. J. Chem. Phys. 149 (2018), 164502.
  • F. Zhang, M.I. Mendelev, Y. Zhang, C.-Z. Wang, M.J. Kramer and K.-M. Ho, Effects of sub-Tg annealing on Cu64.5Zr35.5 glasses: A molecular dynamics study. Appl. Phys. Lett. 104 (2014), 061905.
  • H. Staley, E. Flenner and G. Szamel, Kinetic stability and energetics of simulated glasses created by constant pressure cooling. J. Chem. Phys. 145 (2016), 184505.
  • A. Foroughi, R. Tavakoli and H. Aashuri, Medium range order evolution in pressurized sub-Tg annealing of Cu64Zr36 metallic glass. J. Non-Cryst. Solids 481 (2018), pp. 132–137.
  • X. Fan, Y. Sun, C.Z. Wang, K.M. Ho, M.S. Altman and H. Li, Unveiling the medium-range order in glass models and its role in glass formation. Phys. Rev. B 101 (2020), 214104.
  • M.L. Saboungi, W. Geertsma and D.L. Price, Ordering in liquid alloys. Annu. Rev. Phys. Chem. 41 (1990), pp. 207–244.
  • F. Sommer, Association model for the description of the thermodynamic functions of liquid alloys. Z. Metallkd 73 (1982), pp. 72–76.
  • S. Fang, X. Xiao, L. Xia, W. Li and Y. Dong, Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Sol. 321 (2003), pp. 120–125.
  • Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10 (2008), pp. 534–538.
  • S.N. Idury, B.S. Murty and J. Bhatt, Thermodynamic modeling and composition design for the formation of Zr-Ti-Cu-Ni-Al high entropy bulk metallic glasses. Intermetallics 65 (2015), pp. 42–50.
  • S. Vincent, B.S. Murty and J. Bhatt, Prediction of bulk metallic glass formation in Cu–Zr–Ag–Hf system by thermodynamic and topological modeling. Trans. Indian. Inst. Met. 65 (2012), pp. 827–831.
  • S. Vincent, B.S. Murty and J. Bhatt, Thermodynamic criteria for bulk metallic glass formation in Zr rich quaternary system. AIP Conf. Proc. 1447 (2012), pp. 583–584.
  • F.A. Kuhnast, O. Held, F. Ragnier and E. Illekova, Calorimetric and structural analyses of mechanically alloyed and rapidly quenched Zr-Ni-Al alloys. Mater. Sci. Eng. A 226–228 (1997), pp. 463–467.
  • A.A. Turchanin, I.A. Tomilin, A. Inoue and A.A. Zubkov, Experimental determination of the formation enthalpies of zirconium-nickel-aluminium amorphous alloys. Mater. Sci. Eng. A 226–228 (1997), pp. 487–490.
  • Z. Yan, J. Yan, Y. Hu and S. Dang, Crystallization in Zr60Al15Ni25 bulk metallic glass subjected to rolling at room temperature. Sci. China Ser. E-Technol. Sci. 53 (2010), pp. 278–283.
  • E. Matsubara, T. Tamura, Y. Waseda, A. Inoue, T. Zhang and T. Masumoto, Structural study of Zr60Al15Ni25 amorphous alloys with a wide supercooled liquid region by the anomalous X-ray scattering (AXS) method. Mater. Trans. JIM 33 (1992), pp. 873–878.
  • Y.H. Li, W. Zhang, C. Dong, J.B. Qiang, G.Q. Xie, K. Fujita and A. Inoue, Glass-forming ability and corrosion resistance of Zr-based Zr–Ni–Al bulk metallicglasses. J. Alloy Comp 536 S (2012), pp. S117–S121.
  • A. Zaitsev, N. Zaitseva, J. Alekseeva and Y. Nechaev, Thermodynamics and amorphization of the copper–zirconium alloys. Phys. Chem. Chem. Phys. 5 (2003), pp. 4185–4196.
  • V.I. Kashin, A.M. Katsnelson and A.S. Krylov, A model of quasi-ideal associated solutions to describe thermodynamics of binary melts. Z. Metallkd 81 (1990), pp. 516–520.
  • Y.Y. Chuang, K.C. Hsieh and Y.A. Chang, Thermodynamics and phase relationships of transition metal-sulfur systems, part V: A Re-evaluation of the Fe-S system using an associated solution model for the liquid phase. Metall. Trans. B 168 (1985), pp. 277–285.
  • K. Wasai and K. Mukai, Application of the ideal associated solution model on description of thermodynamic properties of several binary liquid alloys. J. Japan Inst. Met. 45 (1981), pp. 593–602.
  • I. Prigogine and R. Defay, Chemical Thermodynamics, Longmans Greenand Co, London, NY (1954).
  • T. Kulikova, A. Maiorova, V. Bykov and K. Shunyaev, Chemical interaction and thermodynamic properties of (Cu, Ni)-Zr glass-forming alloys. Eur. Phys. J. Spec. Top 226 (2017), pp. 1097–1106.
  • T.V. Kulikova, A.V. Maiorova, R.E. Ryltsev and K.Y. Shunyaev, Chemical interaction, thermodynamics and glass-forming ability of Cu-Zr-Al melts. Phys. B. Cond. Mat. 558 (2019), pp. 82–85.
  • V.V. Burnashova and V.Y. Markiv, A study of the Zr-Ni-Al system. Vest. Lvov. Univ 11 (1969), pp. 34–37. (in Ukraininan).
  • Y. Kawazoe, J.Z. Yu, A.P. Tsai and T. Masumoto, Phase diagrams and physical properties of nonequilibrium alloys.·nonequilibrium phase diagrams of ternary amorphous alloys. Landolt-Börnstein - Group III Condensed Matter 37 A (1997), pp. 1–1.
  • S.V. Meschel and O.J. Kleppa, Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry. J. Alloy. Comp. 191 (1993), pp. 111–116.
  • T. Maciag, Enthalpy of formation of intermetallic phases from Al–Zr system determined by calorimetric solution method. J. Therm. Anal. Calorim 134 (2018), pp. 423–431.
  • P. Nash and O. Kleppa, Composition dependence of the enthalpies of formation of NiAl. J. Alloy. Comp. 321 (2001), pp. 228–231.
  • A.A. Turchanin and L.A. Tomilin, Experimental investigations of the enthalpies of formation of Zr-based metallic amorphous binary and ternary alloys. Ber. Bunsenges. Phys. Chem. 102 (1998), pp. 1252–1258.
  • R.F. Zhang, S.H. Zhang, Z.J. He, J. Jing and S.H. Sheng, Miedema Calculator: a thermodynamic platform for predicting formation enthalpies of alloys within framework of Miedema’s theory. Comput. Phys. Commun 209 (2016), pp. 58–69.
  • S.H. Zhou and F. Sommer, Calorimetric study of liquid and undercooled liquid Al-Ni-Zr alloys. J. N.-Crystal. Sol. 250-252 (1999), pp. 572–576.
  • V.T. Witusiewicz and F. Sommer, Thermodynamics of liquid Al–Ni–Zr and Al–Cu–Ni–Zr alloys. J. N.-Crystal. Sol. 289 (1999), pp. 152–166.
  • H.Q. Li, Y.S. Yang, W.H. Tong and Z.Y. Wang, Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model. J. Alloy. Comp. 428 (2007), pp. 185–189.
  • Y.H. Li, W. Zhang, C. Dong, J.B. Qiang, A. Makino and A. Inoue, Formation and mechanical properties of Zr–Ni–Al glassy alloys with high glass-forming ability. Intermetallics 18 (2010), pp. 1851–1855.
  • A.-h. Cai, X. Xiong, Y. Liu, W.-k. An, J.-y. Tan and Y. Pan, Design of new Zr–Al–Ni–Cu bulk metallic glasses. J. Alloy. Comp. 468 (2009), pp. 432–437.
  • G.A. Mansoori, N.F. Carnahan, K.E. Starling and T.W. Leland, Equilibrium thermodynamic properties of the mixture of hard spheres. J. Chem. Phys. 54 (1971), pp. 1523–1526.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.