241
Views
1
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Formation and annihilation of magnetic skyrmions on a square lattice Heisenberg Ferromagnet: the role played by the pure and random anisotropy configurations

ORCID Icon
Pages 1782-1800 | Received 01 Jan 2021, Accepted 12 May 2021, Published online: 27 May 2021

References

  • T.H.R. Skyrme, A nonlinear field theory, Proc. R. Soc. Lond. A 260 (1961), pp. 127–138.
  • T.H.R. Skyrme, A unified field theory of mesons and baryons, Nuclear Phys. 31 (1962), pp. 556–569.
  • A. Bogdanov and A. Hubert, Thermodynamically stable magnetic vortex states in magnetic crystals, J. Magn. Magn. Mater. 138 (1994), pp. 255–269.
  • A.N. Bogdanov and D.A. Yablonsky, Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets, Sov. Phys. JETP 95 (1989), pp. 178–182.
  • S. Buhrandt and L. Fritz, Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations, Phys. Rev. B 88 (2013), p. 195137.
  • S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral magnet, Science 323 (2009), pp. 915–919.
  • A. Bauer and C. Pfleiderer, Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility, Phys. Rev. B 85 (2012), p. 214418.
  • A. Bauer, M. Garst, and C. Pfleiderer, Specific heat of the Skyrmion lattice phase and field-induced tricritical point in MnSi, Phys. Rev. Lett. 110 (2013), p. 177207.
  • A. Bauer, A. Neubauer, C. Franz, W. Münzer, M. Garst, and C. Pfleiderer, Quantum phase transitions in single-crystal Mn1−xFexSi and Mn1−xCoxSi: Crystal growth, magnetization, ac susceptibility, and specific heat, Phys. Rev. B 82 (2010), p. 064404.
  • X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature 465 (2010), pp. 901–904.
  • M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Böni, and C. Pfleiderer, Fluctuation-induced first-order phase transition in Dzyaloshinskii–Moriya helimagnets, Phys. Rev. B87 (2013), p. 134407.
  • K. Karube, J.S. White, D. Morikawa, C.D. Dewhurst, R. Cubitt, A. Kikkawa, X. Yu, Y. Tokunaga, T. Arima, H.M. Ronnow, Y. Tokura, and Y. Taguchi, Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet, Sci. Adv. 4 (2018), p. 7043.
  • S.X. Huang and C.L. Chien, Extended skyrmion phase in epitaxial FeGe(111) thin films, Phys. Rev. Lett. 108 (2012), p. 267201.
  • D. Kechrakos, A. Patsopoulos, and L. Tzannetou, Magnetic skyrmions in cylindrical ferromagnetic nanostructures with chiral interactions, Phys. Rev. B 102 (2019), p. 054439.
  • E. van Walsem, R.A. Duine, J. Lucassen, R. Lavrijsen, and H.J.M. Swagten, Structural transitions of skyrmion lattices in synthetic antiferromagnets, Phys. Rev. B 100 (2019), p. 064402.
  • S.D. Yi, S. Onoda, N. Nagaosa, and J.H. Han, Skyrmions and anomalous Hall effect in a Dzyaloshinskii–Moriya spiral magnet, Phys. Rev. B 80 (2009), p. 054416.
  • G. Bannasch and W. Selke, Heisenberg antiferromagnets with exchange and cubic anisotropies, J. Phys. Conf. Ser. 200 (2010), p. 022057. Depending on the sign of the cubic anisotropy term, the spins prefer one of the diagonal directions of the lattice. For details, please see.
  • T. Okubo, S. Chung, and H. Kawamura, Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields, Phys. Rev. Lett. 108 (2012), p. 017206.
  • A.O. Leonov and M. Mostovoy, Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet, Nature Commun. 6 (2015), p. 8275.
  • H.D. Rosales, D.C. Cabra, and P. Pujol, Three-sublattice skyrmion crystal in the antiferromagnetic triangular lattice, Phys. Rev. B 92 (2015), p. 214439.
  • R. Keesman, M. Raaijmakers, A.E. Baerends, G.T. Barkema, and R.A. Duine, Skyrmions in square-lattice antiferromagnets, Phys. Rev. B 94 (2016), p. 054402.
  • L. Rózsa, E. Simon, K. Palotás, L. Udvardi, and L. Szunyogh, Complex magnetic phase diagram and skyrmion lifetime in an ultrathin film from atomistic simulations, Phys. Rev. B 93 (2016), p. 024417.
  • J. Chen, W.P. Cai, M.H. Qin, S. Dong, X.B. Lu, X.S. Gao, and J.-M. Liu, Helical and skyrmion lattice phases in three-dimensional chiral magnets: Effect of anisotropic interactions, Sci. Rep. 7 (2017), p. 7392.
  • E.A.S. Oliveira, R.L. Silva, R.C. Silva, and A.R. Pereira, Effects of second neighbor interactions on skyrmion lattices in chiral magnets, J. Phys. Condens. Matter 29 (2017), p. 205801.
  • M. Mohylina and M. Zukovic, Emergence of a skyrmion phase in a frustrated Heisenberg antiferromagnet with Dzyaloshinskii–Moriya interaction, Acta Phys. Pol. A 137 (2019), pp. 616–618.
  • J. Yu, W. Li, Z. Huang, J. Liang, J. Chen, D. Chen, Z. Hou, and M. Qin, Skyrmion crystals in frustrated Shastry–Sutherland magnets, Phys. Status Solidi. RRL 13 (2019), p. 1900161.
  • Z. Liu and H. Ian, Ferromagnetic sublattices of antiferromagnetic skyrmion crystals formed in two-dimensional square lattices, Superlattice Microst. 126 (2019), pp. 25–31.
  • G. Pradhan, B. Ojha, and S. Bedanta, Effect of random anisotropy in stabilization of skyrmions and antiskyrmions, J. Magn. Magn. Mater. 528 (2021), p. 167805.
  • X. Gong, H.Y. Yuan, and X.R. Wang, Current-driven skyrmion motion in granular films, Phys. Rev. B 101 (2020), p. 064421.
  • C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M. Garst, T. Ma, S. Mankovsky, T.L. Monchesky, M. Mostovoy, N. Nagaosa, S.S.P. Parkin, C. Pfleiderer, N. Reyren, A. Rosch, Y. Taguchi, Y. Tokura, K. von Bergmann, and J. Zang, The 2020 skyrmionics roadmap, J. Phys. D: Appl. Phys.53 (2020), p. 363001.
  • J. Liang, W. Wang, H. Du, A. Hallal, K. Garcia, M. Chshiev, A. Fert, and H. Yang, Very large Dzyaloshinskii–Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states, Phys. Rev. B 101 (2020), p. 184401.
  • M. Böttcher, S. Heinze, S. Egorov, J. Sinova, and B. Dupé, B-T phase diagram of Pd/Fe/Ir(111) computed with parallel tempering Monte Carlo, New J. Phys. 20 (2018), p. 103014.
  • G. Yin, Y. Li, L. Kong, R.K. Lake, C.L. Chien, and J. Zang, Topological charge analysis of ultrafast single skyrmion creation, Phys. Rev. B 93 (2016), p. 174403.
  • A.E. Clark, High-field magnetization and coercivity of amorphous rare-earth- Fe2 alloys, Appl. Phys. Lett.23 (1973), pp. 642–644.
  • J.J. Rhyne, J.H. Schelleng, and N.C. Koon, Anomalous magnetization of amorphous TbFe2, GdFe2 and YFe2, Phys. Rev. B 10 (1974), pp. 4672–4679.
  • M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press, 2001.
  • V. Kapitan, E. Vasiliev, and A. Perzhu, Computer simulation of magnetic Skyrmions, Proceedings 46 (2020), p. 6.
  • H.T. Diep, S. El Hog, and A. Bailly-Reyre, Skyrmion crystals: Dynamics and phase transition, AIP. Adv. 8 (2018), p. 055707.
  • M.C. Ambrose and R.L. Stamps, Melting of hexagonal skyrmion states in chiral magnets, New J. Phys. 15 (2013), p. 053003.
  • S. von Malottki, B. Dupé, P.F. Bessarab, A. Delin, and S. Heinze, Enhanced skyrmion stability due to exchange frustration, Sci. Rep. 7 (2017), p. 12299.
  • M. Fattouhi, M.Y. El Hafidi, and M. El Hafidi, Formation of a hexagonal skyrmion lattice assisted by magnetic field in CeFeB ultrathin films, J. Magn. Magn. Mater. 495 (2020), p. 165870.
  • A. Siemens, Y. Zhang, J. Hagemeister, E.Y. Vedmedenko, and R. Wiesendanger, Minimal radius of magnetic skyrmions: Statics and dynamics, New J. Phys. 18 (2018), p. 045021.
  • A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nature Nanotech 8 (2013), p. 152–156.
  • X.S. Wang, H.Y. Yuan, and X.R. Wang, A theory on skyrmion size, Commun. Phys. 1 (2018), p. 31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.