137
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructural characterisation of 160 MeV oxygen irradiated niobium

ORCID Icon, , , , &
Pages 1801-1822 | Received 15 Dec 2020, Accepted 19 May 2021, Published online: 03 Jun 2021

References

  • R.E. Gold and D.L. Harrod, Refractory metal alloys for fusion reactor applications. J. Nucl. Mater. 85–86 (1979), pp. 805–815. doi:10.1016/0022-3115(79)90359-3.
  • S.J. Zinkle and J.T. Busby, Structural materials for fission & fusion energy. Mater. Today 12 (2009), pp. 12–19. doi:10.1016/S1369-7021(09)70294-9.
  • M.S. El-Genk and J.M. Tournier, A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. J. Nucl. Mater. 340 (2005), pp. 93–112. doi:10.1016/j.jnucmat.2004.10.118.
  • K.L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: challenges and opportunities. J. Nucl. Mater 383 (2008), pp. 189–195. doi:10.1016/j.jnucmat.2008.08.044.
  • S.J. Zinkle, Radiation effects in refractory alloys. AIP Conf. Proc. 699 (2004), pp. 733–740. doi:10.1063/1.1649637.
  • D.C. Goldberg, G. Dicker and S.A. Worcester, Niobium and niobium alloys in nuclear power. Nucl. Eng. Des. 22 (1972), pp. 124–137.
  • L.J. Pionke and J.W. Davis, Technical Assessment of Niobium Alloys Data Base for Fusion Reactor Applications, 1979, Web. doi:10.2172/5419637
  • S.J. Zinkle and N.M. Ghoniem, Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51–52 (2000), pp. 55–71. doi:10.1016/S0920-3796(00)00320-3.
  • K.J. Leonard, Radiation effects in refractory metals and alloys, in Comprehensive Nuclear Materials, R. Konings, T.R. Allen, R.E. Stoller, S. Yamanaka, eds., Elsevier Science, Oxford, UK, 2012. pp. 181–213.
  • A.J.R.I. Hahn G and T. Gilbert, Refractory metals and alloys II, in Metallurgy Society Conference, S.M. Perlmutter, ed., Interscience, New York, 1963. pp. 191–221.
  • N. Igata, K. Miyahara and K. Hakomori, Radiation anneal hardening of neutron irradiated niobium. J. Nucl. Sci. Technol. 16 (1979), pp. 73–75.
  • P. Hautojarvi, H. Huomo, P. Saariaho, A. Vehanen and J. Yli-Kauppila, Vacancy recovery in irradiated niobium. J. Phys. FMet. Phys. 13 (1983), p. 1415.
  • S.V. Naidu, A. Sen Gupta and P. Sen, Positron annihilation studies on alpha-irradiated and deformed niobium. J. Nucl. Mater. 148 (1987), pp. 86–91. doi:10.1016/0022-3115(87)90522-8.
  • F.W. Wiffen, Potential refractory alloy requirements for space nuclear power applications, in Refractory Alloy Technology for Space Nuclear Power Applications, CONF-8308130, R.-H. Cooper Jr., E.-E. Hoffman, eds., Oak Ridge National Laboratory, Oak Ridge, TN, 1984. pp. 252–277.
  • B.A. Loomis and S.B. Gerber, Similar dependence on dilute O concentration of void formation in ion-irradiated Nb and some properties of unirradiated Nb. J. Nucl. Mater 97 (1981), pp. 113–125.
  • B.A. Loomis and S.B. Gerber, Swelling of 58Ni+ and 3He+ ion-irradiated Nb and Nb alloys. J. Nucl. Mater. 104 (1981), pp. 1193–1197.
  • B.A. Loomis and S.B. Gerber, Void formation and solute segregation in ion-irradiated niobium-base alloys. J. Nucl. Mater. 117 (1983), pp. 224–233. doi:10.1016/0022-3115(83)90028-4.
  • G.S. Was, Fundamentals of Radiation Materials Science, 1st ed., Springer-Verlag, Berlin, 2007.
  • A. Dutta, N. Gayathri, S. Neogy and P. Mukherjee, Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique. Philos. Mag. 98 (2018), pp. 1031–1052. doi:10.1080/14786435.2018.1425555.
  • L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010), pp. 334–340. doi:10.1016/j.nimb.2009.09.053.
  • G. Ribárik, Modeling of Diffraction Patterns Based on Microstructural Properties, Eötvös Loránd University, Budapest, 2008.
  • J.F. Ziegler, M.D. Ziegler and J.P. Biersack, SRIM - The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010), pp. 1818–1823. doi:10.1016/j.nimb.2010.02.091.
  • R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath and F.A. Garner, On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 310 (2013), pp. 75–80. doi:10.1016/j.nimb.2013.05.008.
  • P. Mukherjee, P. Barat, S.K. Bandyopadhyay and P. Sen, Characterisation of microstructural parameters in oxygen-irradiated Zr–1.0%Nb–1.0%Sn–0.1%Fe. J. Nucl. Mater. 305 (2002), pp. 169–174.
  • B.E. Warren, X-ray studies of deformed metals. Prog. Met. Phys. 8 (1959), pp. 147–202. doi:10.1016/0502-8205(59)90015-2.
  • B.E. Warren and B.L. Averbach, The separation of cold-work distortion and particle size broadening in x-ray patterns [1]. J. Appl. Phys. 23 (1952), p. 497. doi:10.1063/1.1702234.
  • J.I. Langford and D. Louer, Powder diffraction. Rep. Prog. Phys. 59 (1996), pp. 131–234.
  • G. Caglioti, A. Paoletti and F.P. Ricci, Choice of collimators for a crystal spectrometer for nuetron diffaction. Nucl. Instrum. 3 (1958), pp. 223–228. doi:10.1016/0369-643X(58)90029-X.
  • H.-J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, Elsevier Science, London ; Boston : Butterworths, 1982.
  • W.A. Dollase, Correction of intensities of preferred orientation in powder diffractometry: application of the march model. J. Appl. Crystallogr. 19 (1986), pp. 267–272. doi:10.1107/S0021889886089458.
  • G.K. Williamson and R.E. Smallman, III, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. A. J. Theor. Exp. Appl. Phys. 1 (1956), pp. 34–46. doi:10.1080/14786435608238074.
  • M. Wilkens, Theoretical aspects of kinematical X-ray diffraction profiles from crystals containing dislocation distributions, in Fundamental Aspects of Dislocation Theory, R. deWit, J.A. Simmons, eds., National Bureau of Standards, Washington, DC, 1970. pp. 1195–1221.
  • M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles. Phys. Status Solidi 2 (1970), pp. 359–370. doi:10.1002/pssa.19700020224.
  • T. Ungár, I. Dragomir, Á Révész and A. Borbély, The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32 (1999), pp. 992–1002. doi:10.1107/S0021889899009334.
  • A. Borbély, J. Dragomir-Cernatescu, G. Ribárik and T. Ungár, Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals. J. Appl. Crystallogr. 36 (2003), pp. 160–162. doi:10.1107/S0021889802021581.
  • P. Bujard, R. Sanjines, E. Walker, J. Ashkenazi and M. Peter, Elastic constants in Nb-Mo alloys from zero temperature to the melting point: experiment and theory. J. Phys. F Met. Phys. 11 (1981), p. 775.
  • G. Ribárik and T. Ungár, Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis. Mater. Sci. Eng. A 528 (2010), pp. 112–121.
  • I.C. Dragomir and T. Ungár, The dislocations contrast factors of cubic crystals in the Zener constant range between zero and unity. Powder Diffr. 17 (2002), pp. 104–111.
  • J.B. Mitchell, R.A. Van Konynenburg, M.W. Guinan and C.J. Echer, Some electron microscopy observations of 14 MeV neutron damage in niobium. Philos. Mag. 31 (1975), pp. 919–927. doi:10.1080/14786437508229641.
  • R.P. Tucker and S.M. Ohr, Direct observation of neutron irradiation damage in niobium. Philos. Mag. 16 (1967), pp. 643–646.
  • J.J. Kai and R.L. Klueh, Microstructural analysis of neutron-irradiated martensitic steels. J. Nucl. Mater. 230 (1996), pp. 116–123. doi:10.1016/0022-3115(96)00165-1.
  • J. Gittus, Irradiation Effects in Crystalline Solids, United Kingdom, 1978.
  • H. Schultz, Defect parameters of bcc metals: group-specific trends. Mater. Sci. Eng. A 141 (1991), pp. 149–167.
  • S.J. Zinkle, 1.03-Radiation-induced effects on microstructure. Compr. Nucl. Mater. 1 (2012), pp. 65–98.
  • R. Sizmann, The effect of radiation upon diffusion in metals. J. Nucl. Mater. 69–70 (1978), pp. 386–412. doi:10.1016/0022-3115(78)90256-8.
  • B.L. Eyre, Transmission electron microscope studies of point defect clusters in fcc and bcc metals. J. Phys. F Met. Phys. 3 (1973), p. 422-470.
  • M. Kiritani, Similarity and difference between fcc, bcc and hcp metals from the view point of point defect cluster formation. J. Nucl. Mater. 276 (2000), pp. 41–49.
  • B.N. Singh and S.J. Zinkle, Defect accumulation in pure fcc metals in the transient regime: a review. J. Nucl. Mater. 206 (1993), pp. 212–229.
  • B.N. Singh and J.H. Evans, Significant differences in defect accumulation behaviour between fcc and bcc crystals under cascade damage conditions. J. Nucl. Mater. 226 (1995), pp. 277–285.
  • T. Ungár, Strain broadening caused by dislocations. Mater. Sci. Forum 278-281 (1998), pp. 151–157.
  • G.S. Was, J.T. Busby, T. Allen, E.A. Kenik, A. Jensson, S.M. Bruemmer, J. Gan, A.D. Edwards, P.M. Scott and P.L. Andreson, Emulation of neutron irradiation effects with protons: validation of principle. J. Nucl. Mater. 300 (2002), pp. 198–216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.