199
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Designing damping capacity in high strength Fe–Mn based alloys by controlling crystal defect configurations

ORCID Icon, , , ORCID Icon &
Pages 1765-1781 | Received 25 Feb 2021, Accepted 02 Jun 2021, Published online: 16 Jun 2021

References

  • I.G. Ritchie and Z.L. Pan, High-damping metals and alloys. Metall. Trans. A 22 (1991), pp. 607–616.
  • S.-H. Baik, High damping Fe–Mn martensitic alloys for engineering applications. Nucl. Eng. Des. 198 (2000), pp. 241–252.
  • X. Hu, Y. Du, D. Yan and L. Rong, Effect of Cu content on microstructure and properties of Fe–16Cr–2.5Mo damping alloy. J. Mater. Sci. Technol. 34 (2018), pp. 774–781.
  • M. Sun, A. Balagurov, I. Bobrikov, X. Wang, W. Wen, I.S. Golovin and Q. Fang, High damping in Fe–Ga–La alloys: phenomenological model for magneto-mechanical hysteresis damping and experiment. J. Mater. Sci. Technol. 72 (2021), pp. 69–80.
  • C.S. Choi, J.D. Kim, T.H. Cho, S.H. Baik and G.H. Ryu, Damping Capacities in Fe–X% Mn Martensitic Alloys, Proc, of ICOMAT-92, Monterey Institute of Advanced Studies Monterey, California, 1992.
  • K.K. Jee, K. Ito and M.C. Shin, Damping capacity in Fe–27Mn–3.5Si alloy. ISIJ Int. 34 (1994), pp. 912–916.
  • Y.-K. Lee, J.-H. Jun and C.-S. Choi, Effect of ϵ martensite content on the damping capacity of Fe–17%Mn alloy. Scr. Mater. 35 (1996), pp. 825–830.
  • Y.K. Lee, J.H. Jun and C.S. Choi, Damping capacity in Fe–Mn binary alloys. ISIJ Int. 37 (1997), pp. 1023–1030.
  • S.-H. Baik, J.-C. Kim, K.-K. Jee, M.-C. Shin and C.-S. Choi, Transformation behavior and damping capacity in Fe–17%Mn–X%C–Y%Ti alloy. ISIJ Int. 37 (1997), pp. 519–522.
  • K.K. Jee, W.Y. Jang, S.H. Baik, M.C. Shin and C.S. Choi, Damping capacity in Fe–Mn based alloys. Scr. Mater. 37 (1997), pp. 943–948.
  • J.-H. Jun, S.-H. Baik, Y.-K. Lee and C.-S. Choi, The influence of aging on damping capacity of Fe–17%Mn–X%C alloys. Scr. Mater. 39 (1998), pp. 39–44.
  • V.G. Gavriljuk, P.G. Yakovenko and K. Ullakko, Influence of nitrogen on vibration damping and mechanical properties of Fe–Mn alloys. Scr. Mater. 38 (1998), pp. 931–935.
  • J.-H. Jun and C.-S. Choi, Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of γ→ϵ martensitic transformation in Fe–Mn alloy. Mater. Sci. Eng. A 257 (1998), pp. 353–356.
  • K.K. Jee, W.Y. Jang, S.H. Baik and M.C. Shin, Damping mechanism and application of Fe–Mn based alloys. Mater. Sci. Eng. A 273–275 (1999), pp. 538–542.
  • J.-H. Jun and C.-S. Choi, Effect of deformation on the damping capacity in an Fe-23 pct mn alloy. Metallurgical and Materials Transactions A 30 (1999), pp. 667–670.
  • V.V. Bliznuk, N.I. Glavatska, O. Söderberg and V.K. Lindroos, Effect of nitrogen on damping, mechanical and corrosive properties of Fe–Mn alloys. Mater. Sci. Eng. A 338 (2002), pp. 213–218.
  • Y.K. Lee, S.H. Baik, J.C. Kim and C.S. Choi, Effects of amount of ϵ martensite, carbon content and cold working on damping capacity of an Fe–17% Mn martensitic alloy. J. Alloys Compd. 355 (2003), pp. 10–16.
  • S.-H. Baik, J.-C. Kim, D.-W. Han, T.-H. Kim, J.-H. Back and Y.-K. Lee, Fe–Mn martensitic alloys for control of noise and vibration in engineering applications. Mater. Sci. Eng. A 438–440 (2006), pp. 1101–1105.
  • J.H. Jun, Y.K. Lee, J.M. Kim, K.T. Kim and W.J. Jung, Influences of Si and Co addition on microstructure and damping capacity of Fe–Mn alloy. Key Eng. Mater. 319 (2006), pp. 85–90.
  • S.K. Huang, N. Li, Y.H. Wen, J. Teng, Y.G. Xu and S. Ding, Temperature dependence of the damping capacity in Fe–19.35Mn alloy. J. Alloys Compd. 455 (2008), pp. 225–230.
  • T. Sawaguchi, L.-G. Bujoreanu, T. Kikuchi, K. Ogawa and F. Yin, Effects of Nb and C in solution and in NbC form on the transformation-related Internal friction of Fe–17Mn (mass%) alloys. ISIJ Int. 48 (2008), pp. 99–106.
  • Y. Watanabe, H. Sato, Y. Nishino and I.-S. Kim, Training effect on damping capacity in Fe–20mass% Mn binary alloy. Mater. Sci. Eng. A 490 (2008), pp. 138–145.
  • Y. Watanabe, Y. Suga, H. Sato, H. Tsukamoto and Y. Nishino, Damping capacity of Fe–17mass%Mn high damping alloy with variant controlled microstructure. Mater. Trans. 54 (2013), pp. 1288–1294.
  • Y. Wen, H. Xiao, H. Peng, N. Li and D. Raabe, Relationship between damping capacity and variations of vacancies concentration and segregation of carbon atom in an Fe–Mn alloy. Metall. Mater. Trans. A 46 (2015), pp. 4828–4833.
  • H. Wang, H. Wang, R. Zhang, R. Liu, Y. Xu and R. Tang, Effect of high strain amplitude and pre-deformation on damping property of Fe–Mn alloy. J. Alloys Compd. 770 (2019), pp. 252–256.
  • B. Xia, X.-m. Zhang, R.D.K. Misra, M.-m. Pan and Y.-q. Wang, Significant impact of cold-rolling deformation and annealing on damping capacity of Fe–Mn–Cr alloy. J. Iron Steel Res. Int. 27 (2020), pp. 566–576.
  • L. Meng and X. Zhang, Effects of cold rolling deformation on Microstructure and Damping Capacity of a Fe–Mn–Cr–Co–Si alloy. Mater. Res. 22 (2019), p. e20180900.
  • H. Sun, B. Giron-Palomares, W. Qu, G. Chen and H. Wang, Effects of Cr addition and cold pre-deformation on the mechanical properties, damping capacity, and corrosion behavior of Fe–17%Mn alloys. J. Alloys Compd. 803 (2019), pp. 250–259.
  • X. Li, L. Chen and Y. Zhao, Controlled aging processes to improve damping capacity of Fe–19Mn alloy. Mater. Res. Express 6 (2019), p. 066579.
  • S. Shin, M. Kwon, W. Cho, I.S. Suh and B.C. De Cooman, The effect of grain size on the damping capacity of Fe–17 wt%Mn. Mater. Sci. Eng. A 683 (2017), pp. 187–194.
  • M.C. Mangalick and N.F. Fiore, Dislocation damping due to extended dislocations. Acta Metall. 17 (1969), pp. 291–297.
  • S.K. Huang, Y.H. Wen, N. Li, J. Teng, S. Ding and Y.G. Xu, Application of damping mechanism model and stacking fault probability in Fe–Mn alloy. Mater. Charact. 59 (2008), pp. 681–687.
  • S. Huang, W. Huang, J. Liu, J. Teng, N. Li and Y. Wen, Internal friction mechanism of Fe–19Mn alloy at low and high strain amplitude. Mater. Sci. Eng. A 560 (2013), pp. 837–840.
  • W. Pfeiler, Alloy Physics: a Comprehensive Reference, Wiley-VCH, Weinheim, 2007.
  • D. Peckner, I.M. Bernstein and D. Peckner, Handbook of Stainless Steels, McGraw-Hill, New York, 1977.
  • J. Hirth, Thermodynamics of stacking faults. Metal. Trans. 1 (1970), pp. 2367–2026.
  • B.G. Mendis, I.P. Jones and R.E. Smallman, Suzuki segregation in a binary Cu–Si alloy. Microscopy. 53 (2004), pp. 311–323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.