97
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Adiabatic kinetics of phase transformation in shape memory TiNi alloy subjected to shock loading

, &
Pages 1985-2003 | Received 24 Jan 2021, Accepted 17 Jun 2021, Published online: 30 Jun 2021

References

  • D. Bancroft, E.L. Peterson and S. Minshall, Polymorphism of iron at high pressure, J. Appl. Phys 27 (1956), pp. 291–298.
  • G.E. Duvall and R.A. Graham, Phase transition under shock wave loading, Rev Mordern Phys 49(3) (1977), pp. 523–579.
  • A. Bekker, J.C. Jimenez-Victory, P. Popov, and D.C. Lagoudas, Impact induced propagation of phase transformation in a shape memory alloy rod, Int. J. Plast. 18(11) (2002), pp. 1447–1479.
  • M. Bastea, S. Bastea, J.A. Emig, P.T. Springer, and D.B. Reisman, Kinetics of propagating phase transformation in compressed bismuth, Phys. Rev. B 71 (2005), pp. 180101(R).
  • J. Yu, W. Wang and Q. Wu, Nucleation and growth in shock-induced phase transitions and how they determine wave profile features, Phys. Rev. Lett. 109(11) (2012), pp. 115701.
  • N. Amadou, T. De Resseguier, E. Brambrink, T. Vinci, A. Benuzzi-Mounaix, G. Huser, G. Morard, F. Guyot, K. Miyanishi, N. Ozaki, and R. Kodama, Kinetics of the iron α-ϵ phase transition at high-strain rates: experiment and model, Phys. Rev. B 93 (2016), pp. 214108.
  • P.H. Leo, T.W. Shield, and O.P. Bruno, Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires, Acta Metall. Mater. 41(8) (1993), pp. 2477–2485.
  • J.A. Shaw and S. Kyriakides, Thermo-mechanical aspects of NiTi. J. Mech. Phys. Solids 43(8) (1995), pp. 1243–1281.
  • J.A. Shaw and S. Kyriakides, Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, Int. J. Plast. 13(10) (1998), pp. 837–8710.
  • P. Feng and Q.P. Sun, Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force, J. Mech. Phys. Solids 54(8) (2006), pp. 1568–1603.
  • E.A. Pieczyska, S.P. Gadaj, and W.K. Nowacki, Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy, Exp. Mech. 46(4) (2006), pp. 531–542.
  • D. Favier, H. Louche, P. Schlosser, L. Orgéas, P. Vacher and L. Debove, Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. investigation via temperature and strain fields measurements, Acta Mater. 55(16) (2007), pp. 5310–5322.
  • X.H. Zhang, P. Feng, Y.J. He, T.X. Yu, and Q.P. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips, Int. J. Mech. Sci. 52(12) (2010), pp. 1660–1670.
  • Y.J. He and Q.P. Sun, On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars, Int. J. Solids Struct. 48 (2011), pp. 1688–1695.
  • O.P. Bruno, P.H. Leo, and F. Reitich, Free boundary conditions at austnite- martensite interfaces. Phys. Rev. Lett. 74(5) (1995), pp. 746–749.
  • C.B. Churchill, J.A. Shaw, and M.A. Iadicola, Tips and tricks for characterizing shape memory alloy wire: part 3-localization and propagation phenomena, Exp. Tech. 33(5) (2009), pp. 70–78.
  • J.C. Escobar, R.J. Clifton, and S.Y. Yang, Stress-wave-induced martensitic phase transformations in NiTi, AIP Conf. Proc. 505(1) (2000), pp. 267–270.
  • J. Niemczura and K. Ravi-Chandar, Dynamics of propagating phase boundaries in NiTi, J. Mech. Phys. Solids 54(10) (2006), pp. 2136–2161.
  • T.d. Resseguier and H. Martine, Effects of the α-ϵ phase transition on wave propagation and spallation in laser shock-loaded iron, Phys. Rev. B 77 (2008), pp. 174107.
  • T.d. Resseguier, E. Lescoute, and D. Loison, Influence of elevated temperature on the wave propagation and spallation in laser shock-loaded iron, Phys. Rev. B 86(21) (2012), pp. 214102.
  • J.G. Boyd and D.C. Lagoudas, A thermodynamic constitutive model for the shape memory materials. Part I. The monolithic shape memory alloys, Intl. J. Plast. 12(6) (1996), pp. 805–841.
  • M.A. Iadicola and J.A. Shaw, Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, Int. J. Plast. 20(4-5) (2004), pp. 577–605.
  • Y. Liu, L. Shan, J. Shan, and M. Hui, Experimental study on temperature evolution and strain rate effect on phase transformation of TiNi shape memory alloy under shock loading, Int. J. Mech. Sci. 156 (2019), pp. 342–354.
  • Y.C. Chen and D.C. Lagoudas, Impact induced phase transformation in shape memory alloys, J. Mech. Phys. Solids 48(2) (2000), pp. 275–300.
  • X. Dai, Z.P. Tang, S. Xu, Y. Guo, and W. Wang, Propagation of macroscopic phase boundaries under impact loading, Int. J. Impact Eng. 30(4) (2004), pp. 385–401.
  • Z.P. Tang and X. Dai, A preparation method of functionally graded materials with phase transition under shock loading, Shock Waves 15(6) (2006), pp. 447–452.
  • Z.P. Tang, Shock-Induced Phase Transitions, Science Press, Beijing, 2008.
  • S.C. Ngan and L. Truskinovsky, Thermal trapping and kinetics of martensitic phase boundaries, J. Mech. Phys. Solids 47(1) (1999), pp. 141–172.
  • A. Duval, M. Haboussi, and T.B. Zineb, Modeling of localization and propagation of phase transformation in superelastic SMA by a gradient nonlocal approach, Int. J. Solids Struct. 48(13) (2011), pp. 1879–1893.
  • Y.G. Liu and L.Y. Shen, Effect of the fixed temperature interface on the propagation of the phase transition wave, Chin. J. High Press. Phys. 32(4) (2018), pp. 042301.
  • Y.G. Liu, L.Y. Shen, and M.M. Hui, Phase-transformation wave propagating in a temperature-gradient shape-memory TiNi alloy rod under shock loading. Philos. Mag. Lett. 100(7) (2020), pp. 340–354.
  • X.G. Zhong, T.Y. Hou, and P.H. Lefloch, Computational methods for propagating phase boundaries, J. Comput. Phys. 124 (1996), pp. 192–216.
  • M.A. Vattré and C. Denoual, Continuum nonlinear dynamics of unstable shock waves induced by structural phase transformations in iron, J. Mech. Phys. Solids 131 (2019), pp. 387–403.
  • P.P. Zhu and H.H. Dai, Wave propagation in a shape memory alloy bar under an impulsive loading, J. Appl. Mech. 83(10) (2016), pp. 104502.
  • P.P. Zhu and H.H. Dai, On the derivation of an admissibility condition for phase boundary propagation in an SMA bar based on a 3-D formulation. Wave. Motion. 92 (2020), pp. 102442.
  • R. Abeyaratne and J.K. Knowles, On the driving traction on a surface of a strain discontinuity in a continuum, J. Mech. Phys. Solids 38(3) (1990), pp. 345–360.
  • R. Abeyaratne and J.K. Knowles, Dynamics of propagating phase boundaries: adiabatic theory for thermoelastic solids, Phys. D 79(2-4) (1994b), pp. 269–288.
  • R. Abeyaratne and J.K. Knowles, On the kinetics of an austenite-martensite phase transformation induced by impact in a Cu–Al–Ni shape-memory alloy, Acta Mater. 45(4) (1997), pp. 1671–1683.
  • A. Berezovski and G.A. Maugin, On the thermodynamic conditions at moving phase-transition fronts in thermoelastic solids, J. Non-Equilib.Thermodyn 29 (2004), pp. 37–51.
  • A. Berezovski and G.A. Maugin, Stress-induced phase-transition front propagation in thermoelastic solids, Eur. J. Mech. A. Solids 24(1) (2005), pp. 1–21.
  • R. Abeyaratne and J.K. Knowles, A continuum model of a thermoelastic solid capable of undergoing phase transitions, J. Mech. Phys. Solids 41 (1993), pp. 541–571.
  • C. Morin, Z. Moumni and W. Zaki, A constitutive model for shape memory alloys accounting for thermomechanical coupling, Int. J. Plast. 27 (2011), pp. 748–767.
  • Y. Chemisky, F. Meraghni, N. Bourgeois, S. Cornell, R. Echchorfi, and E. Patoor, Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests, Int. J. Mech. Sci. 96–97 (2015), pp. 13–24.
  • Y. Chemisky, D.J. Hartl, and F. Meraghni, Three-dimensional constitutive model for structural and functional Fatigue of shape memory alloy actuators, Int. J. Fatigue 112 (2018), pp. 263–278.
  • D. Chatziathanasiou, Y. Chemisky, G. Chatzigeorgiou, and F. Meraghni, Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading, Int. J. Plast. 82 (2016), pp. 192–224.
  • N.V. Viet, W.W. Zaki, and Z. Moumni, A model for shape memory alloy beams accounting for tensile compressive asymmetry, J. Intell. Mater. Syst. Struct. 30(18-19) (2019), pp. 2697–2715.
  • L.Y. Shen, Y.G. Liu, and M.M. Hui, Dynamic thermo-mechanical behaviors of SME TiNi alloys subjected to shock loading. Acta Mech. Sin. 36(6) (2020), pp. 1336–1349.
  • X. Lin, Numerical Computation of Stress Waves in Solids, Akademine Verlag GrmhH, Berlin, 1996.
  • Y.C. Li, Wave Mechanics, University of Science and Technology of China Press, Hefei, 2015.
  • Y. B. Guo, Study on transformation characteristics and constitution of TiNi Alloy under impact loading, Doctoral thesis, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.