169
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Elucidating the underlying mechanism of relatively high Tc value of the orthorhombic MoRuP: a first-principles study

, , &
Pages 2054-2076 | Received 22 Jan 2021, Accepted 04 Jul 2021, Published online: 12 Jul 2021

References

  • C.B. Shoemaker and D.P. Shoemaker, A ternary alloy with PbCl2-type structure: TiNiSi(E), Acta Cryst. 18 (1965), p. 900.
  • A.E. Dwight, M.H. Mueller, R.A. Conner, J.W. Downey, Jr., and H. Knott, Ternary compounds with the Fe2P-type structure, Trans. Metall. Soc. AIME 242 (1968), p. 2075.
  • H. Kleinke and H.F. Franzen, Sc–Sc bonding in the new ternary phosphide scNiP, J. Solid State Chem. 137 (1998), p. 218.
  • T. Dinges, M. Eul, and R. Pẗtgen, TaRhGe with tiNiSi-type structure, Z. Naturforsch. 65b (2010), p. 95.
  • T. Harmening, H. Eckert, C.M. Fehse, C.P. Sebastian, and R. Pöttgen, Sc-45 solid state NMR studies of the silicides scTSi (T = Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt), J. Solid State Chem. 184 (2011), p. 3303.
  • B. Heying, S. Haverkamp, Ch. Rodewald Ute, H. Eckert, S.C. Peter, and R. Pöttgen, The germanides ScTGe (T = Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, Au) - Structure and Sc-45 solid state NMR spectroscopy, Solid State Sci. 39 (2015), p. 15.
  • Rolf-Dieter Hoffmann, Ch. Rodewald Ute, S. Haverkamp, C. Benndorf, H. Eckert, B. Heying, and R. Pöttgen, The high-temperature modification of ScRuSi-Structure, 29Si and 45Sc solid state NMR spectroscopy, Solid State Sci. 72 (2017), p. 109.
  • T. Kanomata, T. Kawashima, H. Utsugi, T. Goto, H. Hasegawa, and T. Kaneko, Magnetic-properties of the intermetallic compounds MM'X(M = Cr, Mn, M' = Ru, Rh, Pd, and X = P, As), J. Appl. Phys. 69 (1991), p. 4639.
  • T. Eriksson, L. Bergqvist, T. Burkert, S. Felton, R. Tellgren, P. Nordblad, O. Eriksson, and Y. Andersson, Cycloidal magnetic order in the compound IrMnSi, Phys. Rev. B 71 (2005), p. 174420.
  • G.J. Li, E.K. Liu, H.G. Zhang, Y.J. Zhang, J.L. Chen, W.H. Wang, H.W. Zhang, G.H. Wu, and S.Y. Yu, Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys, J. Magn. Magn. Mater. 332 (2013), p. 146.
  • S.C. Ma, D. Hou, F. Yang, Y.L. Huang, G. Song, Z.C. Zhong, D.H. Wang, and Y.W. Du, The antiferromagnetic-ferromagnetic conversion and magnetostructural transformation in Mn-Ni-Fe-Ge ribbons, Appl. Phys. Lett. 104 (2014), p. 202412.
  • P. Dutta, S. Pramanick, S. Majumdar, D. Das, and S. Chatterjee, Multifunctional behavior of Fe-doped MnNiGe magnetic equiatomic compound, J. Magn. Magn. Mater. 395 (2015), p. 312.
  • J. Liu, Yu Si, Y. Gong, G. Xu, Er Liu, F. Xu, and D. Wang, Enhanced magnetic refrigeration performance in metamagnetic MnCoSi alloy by high-pressure annealing, J. Alloys Compd. 701 (2017), p. 858.
  • J.Q. Zhao, H.X. Zhu, C.L. Zhang, Y.G. Nie, H.F. Shi, E.J. Ye, Z.D. Han, and D.H. Wang, Magnetostructural transition and magnetocaloric effect in a MnCoSi-based material system, J. Alloys Compd. 735 (2018), p. 959.
  • M. Onoue, R. Kobayashi, Y. Mitsui, M. Hiroi, K. Takahashi, A. Kondo, K. Kindo, Y. Uwatoko, and K. Koyama, Magnetic and structural properties of MnCoGe with minimal Fe and Sn substitution, Mater. Trans. 59 (2018), p. 1645.
  • R. Muller, R.N. Shelton, Jr. J.W. Richardson, and R.A. Jacobson, Superconductivity and crystal structure of a new class of ternary transition metal phosphides TT'P (T = Zr, Nb, Ta and T = Ru, Rh), J. Less-Common Met. 92 (1983), p. 177.
  • G.P. Meisner and H.C. Ku, The superconductivity and structure of equiatomic ternary transition metal pnictides, Appl. Phys. A 31 (1983), p. 201.
  • G.P. Meissner, H.C. Ku, and H. Barz, Superconducting equiatomic ternary transition metal arsenides, Mater. Res. Bull. 18 (1983), p. 983.
  • I. Shirotani, N. Ichihashi, K. Nozawa, M. Kinoshit, T. Yagi, K. Suzuki, and T. Enoki, Superconductivity of ZrRuP, Jpn. J. Appl. Phys. 32 (1993), p. 695.
  • I. Shirotani, Y. Konno, D. Kato, C. Sekine, S. Todo, and T. Yaagi, Superconductivity of ternary equiatomic compounds with Tc of above 10 K, Jpn. J. Appl. Phys. 39 (2000), p. 5251.
  • I. Shirotani, Superconductivity of ternary metal compounds prepared at high pressures, Bull. Chem. Soc. Jpn. 76 (2003), p. 1291.
  • W. Xian-Zhong, B. Chevalier, J. Etourneau, and P. Hagenmuller, New superconducting equiatomic ternary silicides MIrSi (M = Y, Zr, Hf) with TiNiSi-type structure (anti-PbCl2), Mater. Res. Bull.20 (1985), p. 517.
  • I. Shirotani, K. Tachi, K. Takeda, S. Todo, T. Yagi, and K. Kanoda, Superconductivity of ZrRuSi prepared at high pressure, Phys. Rev. B 52 (1995), p. 6197.
  • N. Kase, H. Suzuki, T. Nakano, and N. Takeda, Superconductivity in the ternary silicide TrIrSi (Tr = Ti, Zr, and Hf), Supercond. Sci. Technol. 29 (2016), p. 035011.
  • B.-B. Ruan, X.-C. Wang, J. Yu, B.-J. Pan, Q.-G. Mu, T. Liu, G.-F. Chen, and Z.-A. Ren, Superconductivity at 3.1 K in the orthorhombic ternary silicide ScRuSi, Supercond. Sci. Technol. 30 (2017), p. 025008.
  • I. Shirotani, K. Tachi, N. Ichihashi, T. Adachi, T. Kikegawa, and O. Shimomura, Phase-transition of ZrRuP at high-temperatures and high-pressures, Phys. Lett. A 205 (1995), p. 77.
  • S. Baǧcı, M. Cin, H.Y. Uzunok, E. Karaca, H.M. Tütüncü, and G.P. Srivastava, Investigating the normal state and superconducting state properties of orthorhombic and hexagonal ZrRuP: a first-principles study, Phys. Rev. B 100 (2018), p. 184507.
  • I. Shirotani, M. Takaya, I. Kaneko, C. Sekine, and T. Yagi, Superconductivity of MRuP and MNiP (M: Mo or W) prepared at high pressure, Solid State Commun. 116 (2000), p. 683.
  • W. Wong-Ng, W.Y. Ching, Yong-Nian Xu, J.A. Kaduk, I. Shirotani, and L. Swartzendruber, Structure and electronic properties of the orthorhombic MoRuP superconductor prepared at high pressure, Phys. Rev. B 67 (2003), p. 144523.
  • W.Y. Ching, Yong-Nian Xu, L. Ouyang, and W. Wong-Ng, Comparative study of the electronic structure of ternary superconductors MoRuP and ZrRuP in the orthorhombic and hexagonal phases, J. Appl. Phys. 93 (2003), p. 8209.
  • I. Hase, Electronic structure of the superconducting compounds o-ZrRuP and MoRuP, Phys. Rev. B68 (2003), p. 064506.
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009), p. 395502.
  • P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, Jr. R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Advanced capabilities for materials modelling with quantum ESPRESSO, J. Phys.: Condens. Matter 29 (2017), p. 465901.
  • A. Dal Corso, Elastic constants of beryllium: a first-principles investigation, J. Phys.: Condens. Matter28 (2016), p. 075401.
  • W. Voigt, Lehrbuch der Kristallphysik, Leipzig, Taubner, 1928.
  • A. Reuss, Berechnung der flieβgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle, Z. Angew. Math. Mech. 9 (1929), p. 49.
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sec. A 65 (1952), p. 349.
  • A.B. Migdal, Interaction between electrons and lattice vibrations in a normal metal, Zh. Eksp. Teor. Fiz. 34 (1958), p. 996.
  • G.M. Eliashberg, Interaction between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP. 11 (1960), p. 696.
  • W.L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167 (1968), p. 331.
  • P.B. Allen and R.C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 12 (1975), p. 905.
  • P.B. Allen and R.C. Dynes, Superconductivity at very strong coupling, J. Phys. C 8 (1975), p. L158.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), p. 3865.
  • R. Stumpf, X. Gonze, and M. Scheffler, A List of Separable, Norm-Conserving, Ab Initio Pseudopotentials, Fritz-Haber-Institut, Berlin, 1990.
  • T.H. Fischer and J. Almlof, General methods for geometry and wave function optimization, J. Phys. Chem. 96 (1992), p. 9768.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), p. A1133.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), p. 5188.
  • F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA30 (1944), p. 244.
  • F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71 (1947), p. 809.
  • A. Kokalj, XCrySDen–a new program for displaying crystalline structures and electron densities, J. Mol. Graph. Model. 17(3–4) (1999), pp. 176–179.
  • D. Farkas, Interatomic potentials for Ti-Al with and without angular forces, Model. Simulat. Mater. Sci. Eng. 2 (1994), p. 975.
  • Z.-j. Wu, E.-j. Zhao, H.-p. Xiang, X.-f. Hao, X.-j. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76 (2007), p. 054115.
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45 (1954), p. 823.
  • J. Haines, J.M. Leger, and G. Bocquillon, Synthesis and design of superhard materials, Annu. Rev. Mater. Res. 31 (2001), p. 1.
  • Z. Sun, D. Music, R. Ahuja, and J.M. Schneider, Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides, Phys. Rev. B 71 (2005), p. 193402.
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), p. 909.
  • L.J. Liu, L. Lian, and J. Yu, Stability, mechanical properties and anisotropic elastic properties of GaxMgy compounds, Mater. Res. 22(2) (2018), p. e20180624.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.