250
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evaluation of mechanical properties of Bi12SiO20 sillenite using first principles and nanoindentation

, , &
Pages 2200-2215 | Received 20 Mar 2021, Accepted 20 May 2021, Published online: 22 Aug 2021

References

  • T. Wang, X. Liu, Q. Men, C. Ma, Y. Liu, P. Huo and Y. Yan, A Z-scheme TiO2 quantum dots fragment-Bi12TiO20 composites for enhancing photocatalytic activity. Renew. Energy 147 (2020), pp. 856–863.
  • X. Yu, X. Zhang, J. Zhao, L. Xu and J. Yan, Flower-like shaped Bi12TiO20/g-C3N4 heterojunction for effective elimination of organic pollutants: preparation, characterization, and mechanism study. Appl. Organomet. Chem. 34 (2020), pp. e5702.
  • C.N. Lv, L. Zhang, J.S. Hu, X.H. Huang and C.M. Hou, Band engineering of Ag-Bi12GeO20-Bi2WO6 composite photocatalyst: interface regulation and enhanced photocatalytic performance. Ceram. Int. 45 (2019), pp. 5249–5258.
  • M. Kowalczyk, T.F. Ramazanova, V.D. Grigoryeva, V.N. Shlegel, M. Kaczkan, B. Fetliński and M. Malinowski, Optical investigation of Eu3+ doped Bi12GeO20 (BGO) crystals. Crystals 10 (2020), pp. 285.
  • M.A. Amanova, V.V. Shepelevich, A.V. Makarevich and V.N. Navnyko, Influence of inverse piezoelectric effect, photoelasticity, and optical activity on the diffraction efficiency of transmissing holograms in photorefractive crystal Bi12SiO20. J. Appl. Spectrosc. 87 (2020), pp. 349–356.
  • K.P. Filar and V.I. Nizhankovskii, Influence of light on the magnetoelectric effect in Fe-doped Bi12SiO20. Eur. Phys. J. B 91 (2018), pp. 6.
  • H.R. Mahmoud, M. Saif and R. Fouad, Novel multi-functional Pr3+:Bi12SiO20 luminescent nano sensor for latent human prints, iron ions in drinking water and anti-counterfeiting application. J. Alloy. Compd. 805 (2019), pp. 887–895.
  • V.M. Skorikov, Y.F. Kargin, A.V. Egorysheva, V.V. Volkov and M. Gospodinov, Growth of sillenite-structure single crystals. Inorg. Mater. 41 (2005), pp. S24–S46.
  • J. Frejlich and P.M. Garcia, Advances in real-time holographic interferometry for the measurement of vibrations and deformations. Opt. Laser. Eng. 32 (1999), pp. 515–527.
  • K.P. Filar, G.P. Gajda and V.I. Nizhankovskii, Influence of light on the magnetoelectric effect in Cr-doped Bi12TiO20. Phys. Status Solidi B 253 (2016), pp. 473–477.
  • V.S. Gorelik, G.I. Dovbeshko, A.V. Evchik, V.N. Moiseenko and M.P. Dergachev, Growth and optical properties of synthetic opal filled with Bi12SiO20 and Bi12GeO20 nanocrystals. Inorg. Mater. 49 (2013), pp. 802–806.
  • S. Neov, V. Marinova, M. Reehuis and R. Sonntag, Neutron-diffraction study of Bi12MO20 single crystals with sillenite structure (M = Si, Si0.995Mn0.005, Bi0.53Mn0.47). Appl. Phys. A: Mater. Sci. Process. 74 (2002), pp. S1016–S1018.
  • M. Isik, S. Delice, N.M. Gasanly, N.H. Darvishov and V.E. Bagiev, Temperature-dependent band gap characteristics of Bi12SiO20 single crystals. J. Appl. Phys. 126 (2019), pp. 245703.
  • M. Isik, S. Delice, H. Nasser, N.M. Gasanly, N.H. Darvishov and V.E. Bagiev, Optical characteristics of Bi12SiO20 single crystals by spectroscopic ellipsometry. Mat. Sci. Semicon. Proc. 120 (2020), pp. 105286.
  • B. Riscob, V.G.M. Shkjir, N. Vijayan, K.K. Maurya, K.K. Rao and G. Bhagavannarayana, Synthesis, crystal growth and mechanical properties of Bismuth Silicon Oxide (BSO) single crystal. J. Alloy. Compd. 588 (2014), pp. 242–247.
  • T.I. Milenov, P.A. Botev, P.M. Rafailov and M.M. Gospodinov, X-ray diffraction topography observations of the core in Bi12SiO20 crystals doped with Mn. Mater. Sci. Eng. B 106 (2004), pp. 148–154.
  • M.E.K. Wiegel and P. Becla, Comparative analysis of electro-optic properties in bismuth silicate grown by the Czochralski, Bridgman-Stockbarger, and hydrothermal techniques. Opt. Mater. 26 (2004), pp. 471–478.
  • Y.F. Zhou, J.C. Wang, L.A. Tang, Z.L. Pan, N.F. Chen, W.C. Chen, Y.Y. Huang and W. He, Space growth studies of Ce-doped Bi12SiO20 single crystal. Mater. Sci. Eng. B 113 (2004), pp. 179–183.
  • M. Wintermantel and I. Biaggio, Temperature-dependent electron mobility and large polaron interpretation in Bi12SiO20. Phys. Rev. B 67 (2003), pp. 165108.
  • I.F. Vasconcelos, R.S. De Figueiredo, S.J. Lima and A.S.B. Sombra, Bismuth silicon oxide (Bi12SiO20-BSO) and bismuth titanium oxide (Bi12TiO20-BTO) obtained by mechanical alloying. J. Mater. Sci. Lett. 18 (1999), pp. 1871–1874.
  • H. Sekhar, P.P. Kiran and D.N. Rao, Structural, linear and enhanced third-order nonlinear optical properties of Bi12SiO20 nanocrystals. Mater. Chem. Phys. 130 (2011), pp. 113–120.
  • Y. Wu, J. Lu, M. Li, J. Yuan, P. Wu, X. Chang, C. Liu and X. Wang, Bismuth silicate photocatalysts with enhanced light harvesting efficiency by photonic crystal. J. Alloy Compd. 810 (2019), pp. 151839.
  • Z. Lazarevic, S. Kostic, V. Radojevic, M. Romcevic, M. Gilic, M.P. Damjanovic and N. Romcevic, Raman spectroscopy of bismuth silicon oxide single crystals grown by the Czochralski technique. Phys. Scr. T157 (2013), pp. 014046.
  • M. Isik, G. Surucu, A. Gencer and N.M. Gasanly, Electronic, optical and thermodynamic characteristics of Bi12SiO20 sillenite: first principle calculations. Mater. Chem. Phys. 267 (2021), pp. 124711.
  • G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6 (1996), pp. 15–50.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50 (1994), pp. 17953–17979.
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 (1999), pp. 1758–1775.
  • J.D. Pack and H.J. Monkhorst, Special points for Brillouin-zone integrations – a reply. Phys. Rev. B 16 (1977), pp. 1748–1749.
  • Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 65 (2002), pp. 104104.
  • D. Healy, N.E. Timms and M.A. Pearce, The variation and visualisation of elastic anisotropy in rock-forming minerals. Solid Earth 11 (2020), pp. 259–286.
  • J.W. Jaeken and S. Cottenier, Solving the christoffel equation: phase and group velocities. Comput. Phys. Commun. 207 (2016), pp. 445–451.
  • F.I. Fedorov and F.I. Fedorov, General Equations of the Theory of Elasticity, in: Theory Elastic Waves Cryst, Springer, New York, 1968.
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47 (1993), pp. 558–561.
  • M. Born, On the stability of crystal lattices. I. Math. Proc. Cambridge Philos. Soc. 36 (1940), pp. 160–172.
  • E. Haussühl, Elastic properties of single crystal Bi12SiO20 as a function of pressure and temperature and acoustic attenuation effects in Bi12MO20 (M = Si, Ge and Ti). Mater. Res. Express 7 (2020), pp. 025701.
  • H. Koc, S. Palaz, S. Simsek, A.M. Mamedov and E. Ozbay, Elastic and optical properties of sillenites: first principle calculations. Ferroelectrics 557(1) (2020), pp. 98–104.
  • W. Voigt, Lehrbuch der kristallphysik. Leipzig 2 (1928).
  • A. Reuss, Berechnung der plastischen formanderungsgeschwindigkeiten bei voraussetzung der schubspannungsfließbedingung. ZAMM J. Appl. Math. 9 (1929), pp. 49–58.
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A. 65 (1952), pp. 349–354.
  • M.A. Hadi, Superconducting phases in a remarkable class of metallic ceramics. J. Phys. Chem. Sol. 138 (2020), pp. 109275.
  • M.A. Hadi, S.H. Naqib, S.R.G. Christopoulos, A. Chroneos and A.K.M.A. Islam, Mechanical behavior, bonding nature and defect processes of Mo2ScAlC2: a new ordered MAX phase. J. Alloys Compd. 724 (2017), pp. 1167–1175.
  • S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45 (1954), pp. 823–843.
  • K. Lau and A.K. McCurdy, Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals. Phys. Rev. B 58 (1998), pp. 8980–8984.
  • A. Gencer, O. Surucu, G. Surucu and E. Deligoz, Anisotropic mechanical properties of Tl4Ag18Te11 compound with low thermal conductivity. J. Solid State Chem. 289 (2020), pp. 121469.
  • W. Bao, D. Liu, P. Li and Y. Duan, Elastic anisotropies and thermal properties of cubic TMIr (TM = Sc, Y,Lu, Ti, Zr and Hf): A DFT calculation. Mater. Res. Express 6 (2019), pp. 086574.
  • W. Zhang, H.Z. Song, Z. Zhang, H. Luo, Y. Jiang, X. Xie, C. Yao, L. Yuan, J. Deng, W. Hu, Q. Chen, H. Huang, Q. Dai, X. Hao and Q. Liu, Determination of mechanical behaviors of Ho3+:BaY2F8 single crystals by nanoindentation. Ceram. Int. 45 (2019), pp. 21751–21758.
  • Y. Ma, X.W. Huang, W. Hang, M. Liu, Y.X. Song, J.L. Yuan and T.H. Zhang, Nanoindentation size effect on stochastic behavior of incipient plasticity in a LiTaO3 single crystal. Eng. Fract. Mech. 226 (2020), pp. 106877.
  • A. Rambabu and K.C.J. Raju, Impact of Sm-substitution and microwave sintering on dielectric and mechanical properties of SrBi4Ti4O15 ceramics. J. Mater. Sci. Mater. El 31 (2020), pp. 19698–19712.
  • A.M. Grishin, Hardness, young’s modulus and elastic recovery in magnetron sputtered amorphous AlMgB14 films. Crystals 10 (2020), pp. 823.
  • H.P. Wampler and A. Ivanisevic, Nanoindentation of gold nanoparticles functionalized with proteins. Micron 40 (2009), pp. 444–448.
  • X.D. Li and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48 (2002), pp. 11–36.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (1992), pp. 1564–1583.
  • S.R. Jian, S.A. Ku, C.W. Luo and J.Y. Juang, Nanoindentation of GaSe thin films. Nanosc. Res. Lett. 7 (2012), pp. 403.
  • S.M. Aouadi, Structural and mechanical properties of TaZrN films: experimental and ab initio studies. J. Appl. Phys. 99 (2006), pp. 053507.
  • C. Lamuta, D. Campi, A. Cupolillo, Z.S. Aliev, M.B. Babanly, E.V. Chulkov, A. Politano and L. Pagnotta, Mechanical properties of Si2Te3 topological insulator investigated by density functional theory and nanoindentation. Scr. Mater. 121 (2016), pp. 50–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.