345
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Flow serrations of rejuvenation behaviour through cryogenic thermal cycling for Zr-based bulk metallic glass

, &
Pages 2261-2272 | Received 08 May 2021, Accepted 29 Jul 2021, Published online: 22 Aug 2021

References

  • C.A. Schuh, T. Hufnagel and U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. 55 (2007), pp. 4067–4109.
  • B.A. Sun and W.H. Wang, The fracture of bulk metallic glasses. Prog. Mater. Sci. 74 (2015), pp. 211–307.
  • A.L. Greer, Y.Q. Cheng and E. Ma, Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 74 (2013), pp. 71–132.
  • J. Fornell, A. Concustell, S. Suriñach, W.H. Li, N. Cuadrado, A. Gebert, M.D. Baró and J. Sort, Yielding and intrinsic plasticity of Ti–Zr–Ni–Cu–Be bulk metallic glass. Int. J. Plast. 25 (2009), pp. 1540–1559.
  • M. Ashby and A. Greer, Metallic glasses as structural materials. Scr. Mater. 54 (2006), pp. 321–326.
  • Y. Zhang, W.H. Wang and A.L. Greer, Making metallic glasses plastic by control of residual stress. Nat. Mater. 5 (2006), pp. 857–860.
  • K.F. Yao and C.Q. Zhang, Fe-based bulk metallic glass with high plasticity. Appl. Phys. Lett. 90 (2007), p. 061901.
  • D.J. Magagnosc, G. Kumar, J. Schroers, P. Felfer, J.M. Cairney and D.S. Gianola, Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires. Acta Mater. 74 (2014), pp. 165–182.
  • J. Carter, E.G. Fu, G. Bassiri, B.M. Dvorak, N. David Theodore, G. Xie, D.A. Lucca, M. Martin, M. Hollander, X. Zhang and L. Shao, Effects of ion irradiation in metallic glasses. Nucl. Instrum. Methods Phys. Res. B 267 (2009), pp. 1518–1521.
  • S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter and A.L. Greer, Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524 (2015), pp. 200–203.
  • J. Ketkaew, R. Yamada, H. Wang, D. Kuldinow, B.S. Schroers, W. Dmowski, T. Egami and J. Schroers, The effect of thermal cycling on the fracture toughness of metallic glasses. Acta Mater. 184 (2020), pp. 100–108.
  • J.S. Langer and M.L. Manning, Steady-state, effective-temperature dynamics in a glassy material. Phys. Rev. E 76 (2007).
  • S.V. Ketov, A.S. Trifonov, Y.P. Ivanov, A.Y. Churyumov, A.V. Lubenchenko, A.A. Batrakov, J. Jiang, D.V. Louzguine-Luzgin, J. Eckert, J. Orava and A.L. Greer, On cryothermal cycling as a method for inducing structural changes in metallic glasses. NPG Asia Mater. 10 (2018), pp. 137–145.
  • W.H. Wang, C. Dong and C.H. Shek, Bulk metallic glasses. Mater. Sci. Eng. R 44 (2004), pp. 45–89.
  • W.H. Wang, Dynamic relaxations and relaxation-property relationships in metallic glasses. Prog. Mater. Sci. 106 (2019), p. 100561.
  • W. Guo, R. Yamada, J.J. Saida, S.L. Lü and S.S. Wu, Thermal rejuvenation of a heterogeneous metallic glass. J. Non-Cryst. Solids 498 (2018), pp. 8–13.
  • B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao and W.H. Wang, Plasticity of ductile metallic glasses: a self-organized critical state. Phys. Rev. Lett. 105 (2010), pp. 035501.
  • S.X. Song, X.L. Wang and T.G. Nieh, Capturing shear band propagation in a Zr-based metallic glass using a high-speed camera. Scr. Mater. 62 (2010), pp. 847–850.
  • W. Guo, J.J. Saida, M. Zhao, S.L. Lü and S.S. Wu, Unconspicuous rejuvenation of a Pd-based metallic glass upon deep cryogenic cycling treatment. Mater. Sci. Eng. A 759 (2019), pp. 59–64.
  • W.J. Wright, R.B. Schwarz and W.D. Nix, Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng. A 319-321 (2001), pp. 229–232.
  • A. Vinogradov, On shear band velocity and the detectability of acoustic emission in metallic glasses. Scr. Mater. 63 (2010), pp. 89–92.
  • B.P. Chandra, Acoustic and photon emissions during mechanical deformation of coloured alkali halide crystals. J. Phys. D Appl. Phys. 17 (1984), pp. 117–123.
  • D. Klaumünzer, R. Maaß and J.F. Löffler, Stick-slip dynamics and recent insights into shear banding in metallic glasses. J. Mater. Res. 26 (2011), pp. 1453–1463.
  • D. Klaumunzer, A. Lazarev, R. Maass, F.H. Dalla Torre, A. Vinogradov and J.F. Loffler, Probing shear-band initiation in metallic glasses. Phys. Rev. Lett. 107 (2011), pp. 185502.
  • Z. Kovács, M. Ezzeldien, K. Máthis, P. Ispánovity, F. Chmelík and J. Lendvai, Statistical analysis of acoustic emission events in torsional deformation of a Vitreloy bulk metallic glass. Acta Mater. 70 (2014), pp. 113–122.
  • K.A. Dahmen, Y. Ben-Zion and J.T. Uhl, A simple analytic theory for the statistics of avalanches in sheared granular materials. Nat. Phys. 7 (2011), pp. 554–557.
  • J. Antonaglia, W.J. Wright, X. Gu, R.R. Byer, T.C. Hufnagel, M. LeBlanc, J.T. Uhl and K.A. Dahmen, Bulk metallic glasses deform via slip avalanches. Phys. Rev. Lett. 112 (2014), pp. 155501.
  • K.A. Dahmen, Y. Ben-Zion and J.T. Uhl, Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett. 102 (2009), pp. 175501.
  • P.H. Cao, K.A. Dahmen, A. Kushima, W.J. Wright, H.S. Park, M.P. Short and S. Yip, Nanomechanics of slip avalanches in amorphous plasticity. J. Mech. Phys. Solids 114 (2018), pp. 158–171.
  • Y.S. Luo, J.J. Li, Z. Wang, M. Zhang and J.W. Qiao, Strain rate-dependent avalanches in bulk metallic glasses. J. Alloys Compd. 864 (2021), pp. 158107.
  • G. Wang, K.C. Chan, L. Xia, P. Yu, J. Shen and W.H. Wang, Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater. 57 (2009), pp. 6146–6155.
  • W. Chen, K.C. Chan, P. Yu and G. Wang, Encapsulated Zr-based bulk metallic glass with large plasticity. Mater. Sci. Eng. A 528 (2011), pp. 2988–2994.
  • Z. Wang, J.W. Qiao, G. Wang, K.A. Dahmen, P.K. Liaw, Z.H. Wang, B.C. Wang and B.S. Xu, The mechanism of power-law scaling behavior by controlling shear bands in bulk metallic glass. Mater. Sci. Eng. A 639 (2015), pp. 663–670.
  • W.L. Johnson and K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence. Phys. Rev. Lett. 95 (2005), p. 195501.
  • D. Pan, A. Inue, T. Sakurai and M.W. Chen, Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl. Acad. Sci. USA 105 (2008), pp. 14769–14772.
  • I.-C. Choi, Y.K. Zhao, B.-G. Yoo, Y.-J. Kim, J.-Y. Suh, U. Ramamurty and J.-I. Jang, Estimation of the shear transformation zone size in a bulk metallic glass through statistical analysis of the first pop-in stresses during spherical nanoindentation. Scr. Mater. 66 (2012), pp. 923–926.
  • Y.S. Luo, Z. Wang, E. J and J.W. Qiao, A universal criterion for the failure threshold in slowly sheared bulk metallic glasses. J. Appl. Phys. 129 (2021), p. 155109.
  • J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl and K.A. Dahmen, Tuned critical avalanche scaling in bulk metallic glasses. Sci. Rep. 4 (2014), p. 4382.
  • L. Li, E.R. Homer and C.A. Schuh, Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable. Acta Mater. 61 (2013), pp. 3347–3359.
  • M.T. Asadi Khanouki, R. Tavakoli and H. Aashuri, Effect of the strain rate on the intermediate temperature brittleness in Zr-based bulk metallic glasses. J. Non-Cryst. Solids 475 (2017), pp. 172–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.