307
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Driving force of zero-macroscopic-strain deformation twinning in face-centred-cubic metals

ORCID Icon, ORCID Icon, , , , & show all
Pages 2318-2330 | Received 23 Apr 2021, Accepted 17 Aug 2021, Published online: 02 Sep 2021

References

  • L. Lu, X. Chen, X. Huang and K. Lu, Revealing the maximum strength in nanotwinned copper. Science 323 (2009), pp. 607–610.
  • L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu and S. Suresh, Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53 (2005), pp. 2169–2179.
  • M. Dao, L. Lu, Y.F. Shen and S. Suresh, Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54 (2006), pp. 5421–5432.
  • L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304 (2004), pp. 422–426.
  • O. Anderoglu, A. Misra, H. Wang and X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys 103 (2008), pp. 094322.
  • X. Zhang, A. Misra, H. Wang, J.G. Swadener, A.L. Lima, M.F. Hundley and R.G. Hoagland, Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins. Appl. Phys. Lett 87 (2005), pp. 233116.
  • S. Ogata, J. Li and S. Yip, Energy landscape of deformation twinning in bcc and fcc metals. Phys. Rev. B 71 (2005), pp. 224102.
  • X.L. Wu, X.Z. Liao, S.G. Srinivasan, F. Zhou, E.J. Lavernia, R.Z. Valiev and Y.T. Zhu, New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett 100 (2008), pp. 095701.
  • J. Wang, O. Anderoglu, J.P. Hirth, A. Misra and X. Zhang, Dislocation structures of Σ3{112} twin boundaries in face centered cubic metals. Appl. Phys. Lett 95 (2009), pp. 021908.
  • J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang and J.P. Hirth, Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58 (2010), pp. 2262–2270.
  • L. Liu, J. Wang, S.K. Gong and S.X. Mao, High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett 106 (2011), pp. 175504.
  • N. Li, J. Wang, J.Y. Huang, A. Misra and X. Zhang, Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu. Scr. Mater 64 (2011), pp. 149–152.
  • J.Y. Zhang, P. Zhang, R.H. Wang, G. Liu, G.J. Zhang and J. Sun, Grain-size-dependent zero-strain mechanism for twinning in copper. Phys. Rev. B 86 (2012), pp. 064110.
  • L. Wang, J. Teng, D. Kong, G. Yu, J. Zou, Z. Zhang and X. Han, In situ atomistic deformation mechanisms of twin-structured nanocrystal Pt. Scr. Mater 147 (2018), pp. 103–107.
  • X.H. An, M. Song, Y. Huang, X.Z. Liao, S.P. Ringer, T.G. Langdon and Y.T. Zhu, Twinning via the motion of incoherent twin boundaries nucleated at grain boundaries in a nanocrystalline Cu alloy. Scr. Mater 72-73 (2014), pp. 35–38.
  • X.L. Ma, H. Zhou, J. Narayan and Y.T. Zhu, Stacking-fault energy effect on zero-strain deformation twinning in nanocrystalline Cu–Zn alloys. Scr. Mater 109 (2015), pp. 89–93.
  • G. Liu, J. Gu, S. Ni, Y. Liu and M. Song, Microstructural evolution of Cu–Al alloys subjected to multi-axial compression. Mater. Charact 103 (2015), pp. 107–119.
  • Y.J. Xu, K. Du, C.Y. Cui and H.Q. Ye, Deformation twinning with zero macroscopic strain in a coarse-grained Ni–Co-based superalloy. Scr. Mater 77 (2014), pp. 71–74.
  • W. Wu, B. Wei, S. Ni, Y. Liu and M. Song, Mechanisms for nucleation and propagation of incoherent twins in a CoCrFeNiMo0.15 high-entropy alloy subject to cold rolling and annealing. Intermetallics 96 (2018), pp. 104–110.
  • J. Gu, L. Zhang, S. Ni and M. Song, Formation of large scaled zero-strain deformation twins in coarse-grained copper. Scr. Mater 125 (2016), pp. 49–53.
  • J. Wang, A. Misra and J.P. Hirth, Shear response of Σ3{112} twin boundaries in face-centered-cubic metals. Phys. Rev. B 83 (2011), pp. 064106.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys 117 (1995), pp. 1–19.
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63 (2001), pp. 224106.
  • R.D. Boyer, J. Li, S. Ogata and S. Yip, Analysis of shear deformations in Al and Cu: empirical potentials versus density functional theory. Model. Simul. Mater Sci. Eng 12 (2004), pp. 1017–1029.
  • S.B. Lee, S.J. Yoo, K. Choi, J.Y. Byun and C.Y. Kim, Migration and roughening of Σ3{112} incoherent twin boundary in an Au nanocrystalline film. Mater. Charact 159 (2020), pp. 110063.
  • Y. Zhang, J. Guo, W. Ming, J. Chen and Z. Zhang, Atomic-scale study on incoherent twin boundary evolution in nanograined Cu. Scr. Mater 186 (2020), pp. 278–281.
  • A. Stukowski and K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng 18 (2010), pp. 015012.
  • Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee and A.V. Hamza, Defective twin boundaries in nanotwinned metals. Nat. Mater 12 (2013), pp. 697–702.
  • M.A. Tschopp and D.L. McDowella, Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading. J. Mech. Phys. Solids 56 (2008), pp. 1806–1830.
  • H. Xie, T. Yu, F. Yin and C. Tang, The effects of crack orientation on the twin formation from the crack tip in γ′-Ni3Al. Mater. Sci. Eng. A 580 (2013), pp. 99–104.
  • J.P. Hirth, Theory of Dislocations, Second ed., McGraw-Hill Press, New York, 1982.
  • W.C. Overton Jr., and J. Gaffney, Temperature variation of the elastic constants of cubic elements. I. copper. Phys. Rev 98 (1955), pp. 969–977.
  • G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals, Thermodynamics, Kinetics, Applications, CRC Press, Boca Raton, 2010, pp.141–142.
  • T. Cai, Z.J. Zhang, P. Zhang, J.B. Yang and Z.F. Zhang, Competition between slip and twinning in face-centered cubic metals. J. Appl. Phys 116 (2014), pp. 163512.
  • F.J. Humphreys and S. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, New York, 1995.
  • J. Gubicza, N.Q. Chinh, J.L. Lábár, Z. Hegedűs and T.G. Langdon, Twinning and dislocation activity in silver processed by severe plastic deformation. J. Mater. Sci 44 (2009), pp. 1656–1660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.