218
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructural evolution and flow behaviour in hot compression of as-extruded Mg–Gd–Nd–Zn–Zr alloy

ORCID Icon, ORCID Icon &
Pages 2473-2501 | Received 01 Dec 2020, Accepted 16 Aug 2021, Published online: 07 Sep 2021

References

  • S. Jayasathyakawin, M. Ravichandran, N. Baskar, C.A. Chairman, and R. Balasundaram, Mechanical properties and applications of magnesium alloy–review, Mater. Today 27 (2020), pp. 909–913.
  • Z. Yu, C. Xu, J. Meng, X. Zhang, and S. Kamado, Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions, Mat. Sci. Eng. A 713 (2018), pp. 234–243.
  • Y. Luo, Y. Wu, Q. Deng, Y. Zhang, J. Chen, and L. Peng, Microstructures and mechanical properties of Mg-Gd-Zn-Zr alloys prepared by spark plasma sintering, J. Alloys Compd. 820 (2020), pp. 153405.
  • T. Xu, Y. Yang, X. Peng, J. Song, and F. Pan, Overview of advancement and development trend on magnesium alloy, J. Magn. Alloy 7(3) (2019), pp. 536–544.
  • A. Arslan Kaya, Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publishing Limited, Cambridge, 2013.
  • S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding, Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250°C, J. Alloys Compd. 421(1) (2006), pp. 309–313.
  • N. Ma, Q. Peng, J. Pan, H. Li, and W. Xiao, Effect of microalloying with rare-earth on recrystallization behaviour and damping properties of Mg sheets, J. Alloys Compd. 592 (2014), pp. 24–34.
  • L. Gao, R. Chen, and E. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, J. Alloys Compd. 481(1-2) (2009), pp. 379–384.
  • J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu, and F.H. Wang, Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys, J. Alloys Compd. 782 (2019), pp. 648–658.
  • T. Chen, Z.Y. Chen, J.B. Shao, R.K. Wang, L.H. Mao, and C.M. Liu, Evolution of LPSO phases in a Mg-Zn-Y-Gd-Zr alloy during semi-continuous casting, homogenization and hot extrusion, Mater. Des. 152 (2018), pp. 1–9.
  • J. Gröbner, A. Kozlov, X.Y. Fang, S.M. Zhu, J.F. Nie, M.A. Gibson, and R. Schmid-Fetzer, Phase equilibria and transformations in ternary Mg-Gd-Zn alloys, Acta Mater. 90 (2015), pp. 400–416.
  • A. Kula, K. Noble, R.K. Mishra, and M. Niewczas, Plasticity of Mg–Gd alloys between 4 and 298 K, Philos. Mag. 96 (2016), pp. 134–165.
  • T. Al-Samman, Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization, Mat. Sci. Eng. A 560 (2013), pp. 561–566.
  • L.W.F. Mackenzie and M.O. Pekguleryuz, The recrystallization and texture of magnesium-zinc-cerium alloys, Scripta Mater. 59 (2008), pp. 665–668.
  • K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scripta Mater 63 (2010), pp. 725–730.
  • T. Honma, T. Ohkubo, S. Kamado, and K. Hono, Effect of Zn additions on the age-hardening of Mg–2.0 Gd–1.2 Y–0.2 Zr alloys, Acta Mater. 55(12) (2007), pp. 4137–4150.
  • J.D. Robson and C. Paa-Rai, The interaction of grain refinement and ageing in magnesium–zinc–zirconium (ZK) alloys, Acta Mater. 95 (2015), pp. 10–19.
  • M. Qian and A. Das, Grain refinement of magnesium alloys by zirconium: formation of equiaxed grains, Scripta Mater. 54(5) (2006), pp. 881–886.
  • L. Tang, F. Jiang, J. Teng, D. Fu, and H. Zhang, Strain path dependent evolutions of microstructure and texture in AZ80 magnesium alloy during hot deformation. J. Alloys Compd. 806 (2019), pp. 292–301. doi:https://doi.org/10.1016/j.jallcom.2019.07.262.
  • X. Shang, J. Zhou, X. Wang, and Y. Luo, Optimizing and identifying the process parameters of AZ31 magnesium alloy in hot compression on the base of processing maps, J. Alloys Compd. 629 (2015), pp. 155–161. doi:https://doi.org/10.1016/j.jallcom.2014.12.251.
  • X. Jin, W. Xu, Z. Yang, C. Yuan, D. Shan, B. Teng, and B.C. Jin, Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy. J. Mater. Sci. Technol. 45 (2020), pp. 133–145.
  • A. Sheikhani, R. Roumina, and R. Mahmudi, Hot deformation behavior of an extruded AZ31 alloy doped with rare earth elements, J. Alloys Compd. 852 (2021), pp. 156961.
  • H. Somekawa, Y. Nakasuji, M. Yuasa, H. Miyamoto, M. Yamasaki, and Y. Kawamura, Hot compression deformation behavior of Mg–Y–Zn alloys containing LPSO phase, Mater. Sci. Eng. A 792 (2020), pp. 139777.
  • Y.X. Li, D. Qiu, Y.H. Rong, and M.X. Zhang, Effect of long-period stacking ordered phase on thermal stability of refined grains in Mg-RE-based alloys, Philos. Mag. 94 (2014), pp. 1311–1326.
  • K. Li, Z. Chen, T. Chen, J. Shao, R. Wang, and C. Liu, Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Zn alloy with LPSO phases. J. Alloys Compd. 792 (2019), pp. 894–906.
  • M. Emami, M. Bozorg, B. Binesh, and H.R. Jafari Nodooshan, Correlation between microstructural characteristics and corrosion properties of Mg-RE alloys in ringer’s solution, J. Electrochem. Soc. 167 (2021), pp. 161511.
  • J. Zhang, Z. Kang, and F. Wang, Mechanical properties and biocorrosion resistance of the Mg-Gd-Nd-Zn-Zr alloy processed by equal channel angular pressing. Mat. Sci. Eng. C 68 (2016), pp. 194–197.
  • C. Wang, G. Wu, E.J. Lavernia, and W. Ding, Influences of heat treatment on microstructural evolution and tensile behavior of squeeze-cast Mg–Gd–Y–Zr alloy, J. Mater. Sci. 52(4) (2017), pp. 1831–1846.
  • S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie and W.J. Ding, Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250°C. J. Alloys Compd 421(1) (2006), pp. 309–313.
  • K. Luo, L. Zhang, G. Wu, W. Liu and W. Ding, Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys, J. Magnes. Alloy 7 (2019), pp. 345–354. doi:https://doi.org/10.1016/j.jma.2019.03.002.
  • J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A 43 (2012), pp. 3891–3939. doi:https://doi.org/10.1007/s11661-012-1217-2.
  • L. Xiao, Y. Zhong, C.P. Chen, M.M. Wuliu, T.K. Luo, L. Liu, and K. Lin, Isothermal section of Mg-Nd-Gd ternary system at 723. Trans. Nonferrous Met. Soc. China 24 (2014), pp. 777–782. doi:https://doi.org/10.1016/S1003-6326(14)63125-3.
  • Z. Su, C. Liu, and Y. Wan, Microstructures and mechanical properties of high performance Mg-4Y-2.4Nd-0.2Zn-0.4Zr alloy, Mater. Des. 45 (2013), pp. 466–472. doi:https://doi.org/10.1016/j.matdes.2012.07.023.
  • A. Srinivasan, Y. Huang, C.L. Mendis, C. Blawert, K.U. Kainer, and N. Hort, Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys, Mater. Sci. Eng. A 595 (2014), pp. 224–234. doi:https://doi.org/10.1016/j.msea.2013.12.016.
  • J. Zhang, X. Zhang, Q. Liu Q, S. Yang, and Z. Wang, Effects of load on dry sliding wear behavior of Mg–Gd–Zn–Zr alloys, J. Mater. Sci. Technol. 33 (2017), pp. 645–651. doi:https://doi.org/10.1016/j.jmst.2016.11.014.
  • X. Zhang, J. Dai, R. Zhang, Z. Ba, and N. Birbilis, Corrosion behavior of Mg–3Gd–1Zn–0.4Zr alloy with and without stacking faults, J. Magnes. Alloy 7 (2019), pp. 240–248. doi:https://doi.org/10.1016/j.jma.2019.02.009.
  • Q. Peng, N. Ma, and H. Li, Gadolinium solubility and precipitate identification in Mg-Gd binary alloy, J. Rare Earths 30 (2012), pp. 1064–1068. doi:https://doi.org/10.1016/S1002-0721(12)60179-3.
  • Z.Y. Cai, C.j. Che, R.H. Chang, L.R. Cheng, and Q.M. Chen, Study on the constitutive behavior and hot deformation characteristic of Mg–4Sm–2Zn–0.5Zr alloy, Int. J. Precis. Eng. Manuf. 20(3) (2019), pp. 407–415.
  • Z. Zhang, Z. Yan, Y. Du, G. Zhang, J. Zhu, L. Ren, and Y. Wang, Hot deformation behavior of homogenized Mg-13.5 Gd-3.2 Y-2.3 Zn-0.5 Zr alloy via hot compression tests, Materials 11(11) (2018), pp. 1–19.
  • L. Li and X. Zhang, Hot compression deformation behavior and processing parameters of a cast Mg–Gd–Y–Zr alloy, Mat. Sci. Eng. A 528(3) (2011), pp. 1396–1401.
  • X. Xia, Q. Chen, K. Zhang, Z. Zhao, M. Ma, X. Li, and Y. Li, Hot deformation behavior and processing map of coarse-grained Mg–Gd–Y–Nd–Zr alloy. Mat. Sci. Eng. A 587 (2013), pp. 283–290.
  • C. Wang, Y. Liu, T. Lin, T. Luo, Y. Zhao, H. Hou, and Y. Yang, Hot compression deformation behavior of Mg-5Zn-3.5 Sn-1Mn-0.5 Ca-0.5 Cu alloy, Mater. Charact. 157 (2019), pp. 109896.
  • C. Sellars and W. Tegart, Relationship between strength and structure in deformation at elevated temperatures, Mem. Sci. Rev. Met. 63(9) (1966), pp. 731–745.
  • S.H. Park, J.-G. Jung, Y.M. Kim, and B.S. You, A new high-strength extruded Mg-8Al-4Sn-2Zn alloy, Mater. Lett. 139 (2015), pp. 35–38.
  • S. Lu, D. Wu, and R. Chen, The effect of twinning on dynamic recrystallization behavior of Mg-Gd-Y alloy during hot compression, J. Alloys Compd. 803 (2019), pp. 277–290.
  • Y. Huang, Y. Wang, X. Meng, L. Wan, J. Cao, L. Zhou, and J. Feng, Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys, J. Mater. Process. Technol. 249 (2017), pp. 331–338.
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014), pp. 130–207.
  • H. Zhou, Q. Wang, B. Ye, and W. Guo, Hot deformation and processing maps of as-extruded Mg–9.8 Gd–2.7 Y–0.4 Zr Mg alloy, Mat. Sci. Eng. A 576 (2013), pp. 101–107.
  • Y. Huang, Y. Wang, X. Meng, L. Wan, J. Cao, L. Zhou, and J. Feng, Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys, J. Mater. Process. Technol. 249 (2017), pp. 331–338.
  • M. Saadati, R.A. Khosroshahi, G. Ebrahimi, and M. Jahazi, Twin-assisted precipitation during hot compression of an Mg-Gd-Zn-Zr magnesium alloy, Mat. Sci. Eng. A 706 (2017), pp. 142–152.
  • S. Anbu Selvan and S. Ramanathan, Hot workability of as-cast and extruded ZE41A magnesium alloy using processing maps, Trans. Nonferrous Met. Soc. China 21(2) (2011), pp. 257–264.
  • E.I. Poliak and J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Mater. 44(1) (1996), pp. 127–136.
  • A. Najafizadeh and J.J. Jonas, Predicting the critical stress for initiation of dynamic recrystallization, ISIJ Int. 46(11) (2006), pp. 1679–1684.
  • Y. Niu, J. Hou, F. Ning, X. Chen, Y. Jia, and Q. Le, Hot deformation behavior and processing map of Mg-2Zn-1Al-0.2 alloy, J. Rare Earths 38(6) (2020), pp. 665–675.
  • Y. Xu, C. Chen, X. Zhang, H. Dai, J. Jia, and Z. Bai, Dynamic recrystallization kinetics and microstructure evolution of an AZ91D magnesium alloy during hot compression, Mater. Charact. 145 (2018), pp. 39–52.
  • M. Aghaie-Khafri and F. Adhami, Hot deformation of 15-5 PH stainless steel, Mat. Sci. Eng. A 527 (2010), pp. 1052–1057.
  • T. Zheng, D. Li, X. Zeng, and W. Ding, Hot compressive deformation behaviors of Mg–10Gd–3Y–0.5 Zr alloy, Prog. Nat. Sci. 26(1) (2016), pp. 78–84.
  • A. Malik, Y. Wang, C. Huanwu, F. Nazeer, B. Ahmed, M.A. Khan, and W. Mingjun, Constitutive analysis, twinning, recrystallization, and crack in fine-grained ZK61 Mg alloy during high strain rate compression over a wide range of temperatures, Mat. Sci. Eng. A 771 (2020), pp. 138649.
  • C. Wang, Y. Liu, T. Lin, T. Luo, Y. Zhao, H. Hou, and Y. Yang, Hot compression deformation behavior of Mg-5Zn-3.5 Sn-1Mn-0.5 Ca-0.5 Cu alloy, Mater. Charact. 157 (2019), pp. 109896.
  • O. Salari, A. Abdi, and M. Aghaie-Khafri, A new criterion for construction of instability maps in hot deformation. Mater. Perform. Charact. 8 (2019), pp. 856–867. doi:https://doi.org/10.1520/MPC20180189.
  • G.R. Johnson and W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, The Netherlands, 1983, pp. 541–547.
  • Q.Y. Hou and J.T. Wang, A modified Johnson–Cook constitutive model for Mg–Gd–Y alloy extended to a wide range of temperatures, Comput. Mater. Sci. 50(1) (2010), pp. 147–152.
  • Y. Lin, X.M. Chen, and G. Liu, A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel, Mat. Sci. Eng. A 527(26) (2010), pp. 6980–6986.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.