234
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Graphite to AlB2 and MgB2: a comparative study of their tight-binding model and Dirac nodal line

ORCID Icon, , , &
Pages 2599-2613 | Received 03 Jun 2021, Accepted 06 Jul 2021, Published online: 22 Sep 2021

References

  • C.L. Kane and E.J. Mele, Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95 (2005), pp. 146802.
  • M.Z. Hasan and C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82 (2010), pp. 3045.
  • X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83 (2011), pp. 1057–1110.
  • N.P. Armitage, E.J. Mele and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90 (2018), pp. 015001.
  • T. Zhang, Z. Song, A. Alexandradinata, H. Weng, C. Fang, L. Lu and Z. Fang, Double-Weyl Phonons in transition-metal monosilicides. Phys. Rev. Lett. 120 (2018), pp. 016401.
  • H. Miao, T.T. Zhang, L. Wang, D. Meyers, A.H. Said, Y.L. Wang, Y.G. Shi, H.M. Weng, Z. Fang and M.P.M. Dean, Observation of Double Weyl Phonons in parity-breaking FeSi. Phys. Rev. Lett. 121 (2018), pp. 035302.
  • Y. Jin, R. Wang and H. Xu, Recipe for Dirac phonon states with a quantized valley berry phase in Two-dimensional hexagonal lattices. Nano Lett. 18 (2018), pp. 7755–7760.
  • B.W. Xia, R. Wang, Z.J. Chen, Y.J. Zhao and H. Xu, Symmetry-protected ideal type-II Weyl Phonons in CdTe. Phys. Rev. Lett. 123 (2019), pp. 065501.
  • R. Wang, B.W. Xia, Z.J. Chen, B.B. Zheng, Y.J. Zhao and H. Xu, Symmetry-protected topological triangular Weyl complex. Phys. Rev. Lett. 124 (2020), pp. 105303.
  • J. Nagamatsu, N. Nakagaua, T. Muranaka, Y. Zenitani and J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410 (2001), pp. 632001.
  • S.L. Bud'ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson and P.C. Canfield, Boron isotope effect in superconducting MgB2. Phys. Rev. Lett. 86 (2001), pp. 1877.
  • K.-H. Jin, H. Huang, J.-W. Mei, Z. Liu, L.-K. Lim and F. Liu, Topological superconducting phase in high-Tc superconductor MgB2 with dirac–nodal-line fermions. NPJ Comput. Mater. 5 (2019), pp. 57.
  • X. Zhou, K.N. Gordon, K.H. Jin, H. Li, D. Narayan, H. Zhao, H. Zheng, H. Huang, G. Cao, N.D. Zhigadlo, F. Liu and D.S. Dessau, Observation of topological surface state in high temperature superconductor MgB2. Phys. Rev. B. 100 (2019), pp. 184511.
  • D. Takane, S. Souma, K. Nakayama, T. Nakamura, H. Oinuma, K. Hori, K. Horiba, H. Kumigashira, N. Kimura, T. Takahashi and T. Sato, Observation of a Dirac nodal line in AlB2. Phys. Rev. B. 98 (2018), pp. 041101(R).
  • X. Feng, C. Yue, Z. Song, Q. Wu and B. Wen, Topological Dirac nodal-net fermions in AlB2-type TiB2 and ZrB2. Phys. Rev. Mater. 2 (2018), pp. 014202.
  • R. Li, H. Ma, X. Cheng, S. Wang, D. Li, Z. Zhang, Y. Li and X.Q. Chen, Dirac node lines in pure alkali earth metals. Phys. Rev. Lett. 117 (2016), pp. 096401.
  • Z. Cheng, Z. Zhang, H. Sun, S. Li, H. Yuan, Z. Wang, Y. Cao, Z. Shao, Q. Bian, X. Zhang, F. Li, J. Feng, S. Ding, Z. Mao and M. Pan, Visualizing Dirac nodal-line band structure of topological semimetal ZrGeSe by ARPES. APL Mater. 7 (2019), pp. 051105.
  • Y. Xu, Y. Gu, T. Zhang, C. Fang, Z. Fang, X.-L. Sheng and H. Weng, Topological nodal lines and hybrid Weyl nodes in YCoC2. APL Mater. 7 (2019), pp. 101109.
  • Y. Shao, Z. Sun, Y. Wang, C. Xu, R. Sankare, A.J. Breindel, C. Cao, M.M. Fogler, A.J. Millis, F. Chou, Z. Li, T. Timusk, M.B. Maple and D.N. Basov, Optical signatures of Dirac nodal lines in NbAs2. Proc. Natl. Acad. Sci. U.S.A. 116 (2019), pp. 1168.
  • M. Tian, J. Wang, X. Liu, W. Chen, Z. Liu, H. Du, X. Ma, X. Cui, A. Zhao, Q. Shi, Z. Wang, Y. Luo, J. Yang, B. Wang and J.G. Hou, Creation of the Dirac Nodal Line by extrinsic Symmetry engineering. Nano Lett. 20 (2020), pp. 2157–2162.
  • Z. Liu, R. Lou, P. Guo, Q. Wang, S. Sun, C. Li, S. Thirupathaiah, A. Fedorov, D. Shen, K. Liu, H. Lei and S. Wang, Experimental observation of Dirac Nodal links in centrosymmetric semimetal TiB2. Phys. Rev. X. 8 (2018), pp. 031044.
  • J. Li, Q. Xie, J. Liu, R. Li, M. Liu, L. Wang, D. Li, Y. Li and X.-Q. Chen, Phononic Weyl nodal straight lines in MgB2. Phys. Rev. B. 101 (2020), pp. 024301.
  • J.A. Alarco, P.C. Talbot and I.D.R. Mackinnon, Phonon anomalies predict superconducting Tc forAlB2-type structures. Phys. Chem. Chem. Phys. 17 (2015), pp. 25090.
  • C. Cheng, M.Y. Duan, Z. Wang and X.L. Zhou, Alb2 and MgB2: a comparative study of their electronic, phonon and superconductivity properties via first principles. Philos. Mag. 100 (2020), pp. 2275–2289.
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47 (1993), pp. 558.
  • G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B. 49 (1994), pp. 14251.
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54 (1996), pp. 11169–11186.
  • P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50 (1994), pp. 17953–17979.
  • J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhais, Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46 (1992), pp. 6671.
  • Q. Wu, S. Zhang, H.-F. Song, M. Troyer and A.A. Soluyanov, Wanniertools: An open-source software package for novel topological materials. Comput. Phys. Commun. 224 (2018), pp. 405–416.
  • M. d'Astuto, R. Heid, B. Renker, F. Weber, H. Schober, O. De la Peña-Seaman, J. Karpinski, N.D. Zhigadlo, A. Bossak and M. Krisch, Nonadiabatic effects in the phonon dispersion of Mg1−xAlxB2. Phys. Rev. B. 93 (2016), pp. 180508(R).
  • J.A. Alarco, P.C. Talbotab and I.D.R. Mackinnon, Coherent phonon decay and the boron isotope effect for MgB2. Phys. Chem. Chem. Phys. 16 (2014), pp. 25386.
  • J.C. Slater and G.F. Koster, Simplified LCAO method for the periodic potential problem. Phys. Rev. 94 (1954), pp. 1498.
  • https://tight-binding.com/.
  • M. Nakhaee, S.A. Ketabi and F.M. Peeters, Tight-Binding Studio: a technical software package to find the parameters of tight-binding Hamiltonian. Comput. Phys. Commun. 254 (2020), pp. 107379.
  • J.M. An and W.E. Pickett, Superconductivity of MgB2: covalent bonds driven metallic. Phys. Rev. Lett. 86 (2001), pp. 4366.
  • M. Nakhaee, S.A. Ketabi and F.M. Peeters, Tight-binding model for borophene and borophane. Phys. Rev. B. 97 (2018), pp. 125424.
  • M. Nakhaee, S.A. Ketabi and F.M. Peeters, Dirac nodal line in bilayer borophene: tight-binding model and low-energy effective Hamiltonian. Phys. Rev. B. 98 (2018), pp. 115413.
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 21 (2009), pp. 395502.
  • P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys.: Condens. Matter. 29 (2017), pp. 465901.
  • A.A. Mostofi, J.R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt and N. Marzari, An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185 (2014), pp. 2309−2310.
  • M.L. Sancho, J.L. Sancho and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F: Met. Phys. 14 (1984), pp. 1205.
  • M.L. Sancho, J.L. Sancho and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 15 (1985), pp. 851.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.